People continue to think about #AI in terms of #2010s computing, which is part of the reason everyone gets it wrong whether they're #antiAI or #tech bros.
Look, we had 8GB of #ram as the standard for a decade. The standard was set in 2014, and in 2015 #AlphaGo beat a human at #Go.
Why? Because, #hardware lags #software - in #economic terms: supply follows demand, but demand can not create its own supply.
It takes 3 years for a new chip to go through the #technological readiness levels and be released.
It takes 5 years for a new #chip architecture. E.g. the #Zen architecture was conceived in 2012, and released in 2017.
It takes 10 years for a new type of technology, like a #GPU.
Now, AlphaGo needed a lot of RAM, so how did it stagnate for a decade after doubling every two years before that?
In 2007 the #Iphone was released. #Computers were all becoming smaller, #energy #efficiency was becoming paramount, and everything was moving to the #cloud.
In 2017, most people used their computer for a few applications and a web browser. But also in 2017, companies were starting to build #technology for AI, as it was becoming increasingly important.
Five years after that, we're in the #pandemic lockdowns, and people are buying more powerful computers, we have #LLM, and companies are beginning to jack up the const of cloud services.
#Apple releases chips with large amounts of unified #memory, #ChatGPT starts to break the internet, and in 2025, GPU growth continues to outpace CPU growth, and in 2025 you have a competitor to Apple's unified memory.
The era of cloud computing and surfing the #web is dead.
The hype of multi-trillion parameter #LLMs making #AGI is a fantasy. There isn't enough power to do that, there aren't enough chips, it's already too expensive.
What _is_ coming is AI tech performing well and running locally without the cloud. AI Tech is _not_ just chatbots and #aiart. It's going to change what you can do with your #computer.
Oops, I think I've gone a bit too deep into the #AI rabbit hole today (a thread
):
Did you know why AI systems like #AlphaGo or #AlphaZero performed so well?
It was because of their _objective function_:
-1 for loosing, +1 for winning ¯\_(ツ)_/¯
Why Artificial Intelligence Like AlphaZero Has Trouble With the Real World (February 2018)
Try to design an objective function for a self-driving car...
1/3
What do a baby learning to walk and AlphaGo’s legendary Move 37 have in common?
They both learn by doing — not by being told.
That’s the essence of Reinforcement Learning.
It's great to see that my article on Q-learning & Python agents was helpful to many readers and was featured in this week's Top 5 by Towards Data Science. Thanks! And make sure to check out the other four great reads too.
-> https://www.linkedin.com/pulse/whats-our-reading-list-week-towards-data-science-dcihe
Did you know machine learning algorithms can teach themselves to play video games just by practicing? AI like DeepMind’s AlphaGo and OpenAI’s Dota 2 bot have even beaten top human players by learning and adapting on their own—showing how powerful and creative AI can be!
What does a baby learning to walk have in common with AlphaGo’s Move 37?
Both learn by doing — not by being told.
That’s the essence of Reinforcement Learning.
In my latest article, I explain Q-learning with a bit Python and the world’s simplest game: Tic Tac Toe.
-> No neural nets.
-> Just some simple states, actions, rewards.
The result? A learning agent in under 100 lines of code.
Perfect if you are curious about how RL really works, before diving into more complex projects.
Concepts covered: ε-greedy policy
Reward shaping
Value estimation
Exploration vs. exploitation
Read the full article on Towards Data Science → https://towardsdatascience.com/reinforcement-learning-made-simple-build-a-q-learning-agent-in-python/
Ведущий разработчик ChatGPT и его новый проект — Безопасный Сверхинтеллект
Многие знают об Илье Суцкевере только то, что он выдающийся учёный и программист, родился в СССР, соосновал OpenAI и входит в число тех, кто в 2023 году изгнал из компании менеджера Сэма Альтмана. А когда того вернули, Суцкевер уволился по собственному желанию в новый стартап Safe Superintelligence («Безопасный Сверхинтеллект»). Илья Суцкевер действительно организовал OpenAI вместе с Маском, Брокманом, Альтманом и другими единомышленниками, причём был главным техническим гением в компании. Ведущий учёный OpenAI сыграл ключевую роль в разработке ChatGPT и других продуктов. Сейчас Илье всего 38 лет — совсем немного для звезды мировой величины.
https://habr.com/ru/companies/ruvds/articles/892646/
#Илья_Суцкевер #Ilya_Sutskever #OpenAI #10x_engineer #AlexNet #Safe_Superintelligence #ImageNet #неокогнитрон #GPU #GPGPU #CUDA #компьютерное_зрение #LeNet #Nvidia_GTX 580 #DNNResearch #Google_Brain #Алекс_Крижевски #Джеффри_Хинтон #Seq2seq #TensorFlow #AlphaGo #Томаш_Миколов #Word2vec #fewshot_learning #машина_Больцмана #сверхинтеллект #GPT #ChatGPT #ruvds_статьи
#ACMPrize
#2024ACMPrize
#ACMTuringAward
» #ReinforcementLearning
An Introduction
1998
standard reference...cited over 75,000
...
prominent example of #RL
#AlphaGo victory
over best human #Go players
2016 2017
....
recently has been the development of the chatbot #ChatGPT
...
large language model #LLM trained in two phases ...employs a technique called
reinforcement learning from human feedback #RLHF «
aka cheap labor unnamed in papers
https://awards.acm.org/about/2024-turing
2/2
Pequeños y grandes pasos hacia el imperio de la inteligencia artificial
Fuente: Open TechTraducción de la infografía:
(!!) Test de Turing: donde un evaluador humano entabla una conversación en lenguaje natural con una máquina y un humano.
(!!) Redes neuronales: modelos de aprendizaje automático que imitan el cerebro y aprenden a reconocer patrones y hacer predicciones a través de conexiones neuronales artificiales.
(!!) DeepMind fue adquirida por Google en 2014 por 500 millones de dólares.
(!!) Procesamiento del lenguaje natural: enseña a las computadoras a comprender y utilizar el lenguaje humano mediante técnicas como el aprendizaje automático.
Gráfico: Open Tech / Genuine Impact
Entradas relacionadas
Le moment #DeepSeek (2025) est la conséquence du moment #AlphaGo (2010) de #Google #Deepmind : il a été vécu comme le moment #Spoutnik (1957) de la #Chine pour l' #IA #AI
www.numerama.com/tech/1894778...
Comment AlphaGo a joué un rôle...
https://techxplore.com/news/2024-12-ai-human-general-intelligence.html
#OpenAI started with a general-purpose version of the #o3system (which…can spend more time "thinking" about difficult questions) and then trained it specifically for the ARC-AGI test.
French #AI researcher Francois Chollet…believes o3 searches through different "chains of thought" describing steps to solve the task. It would then choose the "best"…"not dissimilar" to how #Google #AlphaGo system…beat the world Go champion.
ChatGPT Learned to Reason [video]
https://www.youtube.com/watch?v=PvDaPeQjxOE
#ycombinator #AI_reasoning #ChatGPT_explained #artificial_intelligence #neural_networks #Monte_Carlo_Tree_Search #DeepMind #AlphaGo #chess_AI #language_models #machine_learning #reinforcement_learning #deep_learning #AI_history #GPT_training #chain_of_thought #AI_breakthrough #game_AI #TD_Gammon #MuZero #Claude_AI #O1_AI #AI_algorithms #AI_development #computer_reasoning #AI_evolution #future_AI
When #AlphaGo cracked #Go, the holy grail of game #AI, it proved that there are problems that we can currently only solve via a machine learning approach.
Other approaches never managed more than mediocre play, AlphaGo beat the world class.
Nine years later there are two types of AI:
- Type 1 solves such problems.
- Type 2 is #bullshit.
Scatole oscure o intelligenze aliene? Il caso del software AlphaGo e i fantasmi di Italo Calvino https://altreconomia.it/scatole-oscure-o-intelligenze-aliene-il-caso-del-software-alphago-e-i-fantasmi-di-italo-calvino/ #Intelligenzaartificiale #reinforcementlearning #scatoleoscure #deeplearning #italocalvino #alanturing #samaltman #Opinioni #deepmind #alphago #chatgpt #Harari #go