Nicole Sharp<p><strong>Why Nature Loves Fractals</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/fractal2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/fractal1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/fractal3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p><p>Trees, blood vessels, and rivers all follow branching patterns that make their pieces look very similar to their whole. We call this repeating, self-similar shape a fractal, and this Be Smart video explores why these branching patterns are so common, both in living and non-living systems. For trees, packing a large, leafy surface area onto the smallest amount of wood makes sense; the tree needs plenty of solar energy (and water and carbon dioxide) to photosynthesize, and it has to be efficient about how much it grows to get that energy. Similarly, our lungs and blood vessels need to pack a lot of surface area into a small space to support the diffusion that lets us move oxygen and waste through our bodies. Non-living systems, like the branches of viscous fingers or river deltas or the branching of cracks and lightning, rely on different physics but wind up with the same patterns because they, too, have to balance forces that scale with surface area and ones that scale with volume. (Video and image credit: Be Smart)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/branching-flow/" target="_blank">#branchingFlow</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/diffusion/" target="_blank">#diffusion</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fractals/" target="_blank">#fractals</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mathematics/" target="_blank">#mathematics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/river-deltas/" target="_blank">#riverDeltas</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/trees/" target="_blank">#trees</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscous-fingering/" target="_blank">#viscousFingering</a></p>