@w Mit was hast du das dargestellt? Vermutlich #JSXGraph
Sieht ja an sich gut aus, aber mit #GeoGebra wäre das vermutlich schneller gelöst? Einbetten geht auch und einen Knopf zum Abspeichern als Bild kann man auch haben. Lässt sich dann nachträglich auch besser bearbeiten vermute ich.
Okay, was die KI betrifft, da weiß ich nicht, ob die bei GeoGebra helfen kann.
Wenn du Fragen hast zu einer konkreten GeoGebra-Zeichnung kannst du gerne nachfragen.
This uses rigid rods. Seems obvious in hindsight?
#MathArt #geometry #animation #loop #geogebra #octahedron #cube #3d
This is what I was trying to do originally, I wonder what it would look like if I used rigid rods for the edges.
#MathArt #geometry #animation #loop #geogebra #octahedron #cube #3d
I tried to model these origami as transformation between cube and octahedron in Geogebra, but ended up with this instead
#MathArt #geometry #animation #loop #geogebra #tetrahedron #3d
I've created some stuff in #GeoGebra to make it easier for my students to visualize some things in class today and it worked really well. I am happy and proud.
@mrdk @unnick I'm kind of surprised and not surprised about how the tetrahedron turned out.
#MathArt #geometry #animation #loop #geogebra #tetrahedron #3d
@mrdk @unnick And here’s the rhombic triacontahedron for the dodecahedron/icosahedron (again without scaling the bars to have constant length).
#MathArt #geometry #animation #loop #geogebra #dodecahedron #icosahedron #3d
@mrdk @unnick This version shows how the cube/octahedron works using a rhombic dodecahedron (without scaling the bars to have constant length).
#MathArt #geometry #animation #loop #geogebra #cube #octahedron #3d
@mrdk @unnick
I'm not sure that these are related to the Jitterbug transformation.
This is my recreation of unnick's original cube/octahedron loop. I used the rhombic dodecahedron and rhombic triacontahedron for this and the previous loop. They remind me of tensegrity structures.
BTW, I made a couple of origami versions of the Jitterbug transformation many years ago. This one https://foldworks.net/wp-content/uploads/2018/06/jitterbug.pdf works better than the first version https://britishorigami.org/academic/davidpetty/origamiemporium/lam_jitterbug.htm
I couldn’t resist making this in Geogebra: morphing between a regular icosahedron and a regular dodecahedron.
h/t @unnick https://mathstodon.xyz/@unnick@booping.synth.download/114350750053349050
Cracks de #GeoGebra
@geogebra.org apuntad en vuestras agendas:
*1 de junio, último día de recepción de propuestas
*23, 24 y 25 de Octubre #IICongresoInternacionaldeGeogebra en #Coimbra
RE: https://bsky.app/profile/did:plc:3j4ppm3jjsktdyu5jn3s3llr/post/3lmmsfatsvk2v