mastodon.world is one of the many independent Mastodon servers you can use to participate in the fediverse.
Generic Mastodon server for anyone to use.

Server stats:

8.1K
active users

#graphs

13 posts7 participants2 posts today
Rémi Eismann<p>My decomposition?<br>The threats are no longer even veiled.<br>Reddit - r/math - new (chronological) - 8d ago</p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a> <a href="https://mathstodon.xyz/tags/NSA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NSA</span></a> <a href="https://mathstodon.xyz/tags/CIA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CIA</span></a> <a href="https://mathstodon.xyz/tags/DGSE" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DGSE</span></a> <a href="https://mathstodon.xyz/tags/DGSI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DGSI</span></a> <a href="https://mathstodon.xyz/tags/Google" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Google</span></a></p>
Rémi Eismann<p>Generation of four sequences decomposed into weight × level + jump (log(weight), log(level), log(jump)) - three.js animation:<br>🧵⬇️</p><p>1: The natural numbers (A000027) ➡️ <a href="https://decompwlj.com/3DgraphGen/Natural_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Natur</span><span class="invisible">al_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>My decomposition? (The threats are no longer even veiled)<br>Reddit - r/math - new (chronological) - 7d ago</p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a> <a href="https://mathstodon.xyz/tags/NSA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NSA</span></a> <a href="https://mathstodon.xyz/tags/CIA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CIA</span></a> <a href="https://mathstodon.xyz/tags/DGSE" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DGSE</span></a> <a href="https://mathstodon.xyz/tags/DGSI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DGSI</span></a> <a href="https://mathstodon.xyz/tags/Google" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Google</span></a></p>
Rémi Eismann<p>Generation of four sequences decomposed into weight × level + jump (log(weight), log(level), log(jump)) - three.js animation:<br>🧵⬇️</p><p>1: The natural numbers (A000027) ➡️ <a href="https://decompwlj.com/3DgraphGen/Natural_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Natur</span><span class="invisible">al_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>My decomposition? (The threats are no longer even veiled)</p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a> <a href="https://mathstodon.xyz/tags/NSA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NSA</span></a> <a href="https://mathstodon.xyz/tags/CIA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CIA</span></a> <a href="https://mathstodon.xyz/tags/DGSE" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DGSE</span></a> <a href="https://mathstodon.xyz/tags/DGSI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DGSI</span></a> <a href="https://mathstodon.xyz/tags/Google" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Google</span></a></p>
Rémi Eismann<p>Generation of four sequences decomposed into weight × level + jump (log(weight), log(level), log(jump)) - three.js animation:<br>🧵⬇️</p><p>1: The natural numbers (A000027) ➡️ <a href="https://decompwlj.com/3DgraphGen/Natural_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Natur</span><span class="invisible">al_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>My decomposition? (Reddit - r/math - new- 5 day ago)</p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a> <a href="https://mathstodon.xyz/tags/NSA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NSA</span></a> <a href="https://mathstodon.xyz/tags/CIA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CIA</span></a> <a href="https://mathstodon.xyz/tags/DGSE" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DGSE</span></a> <a href="https://mathstodon.xyz/tags/DGSI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DGSI</span></a> <a href="https://mathstodon.xyz/tags/Google" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Google</span></a></p>
Rémi Eismann<p>Generation of four sequences decomposed into weight × level + jump (log(weight), log(level), log(jump)) - three.js animation:<br>🧵⬇️</p><p>1: The natural numbers (A000027) ➡️ <a href="https://decompwlj.com/3DgraphGen/Natural_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Natur</span><span class="invisible">al_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>Generation of four sequences decomposed into weight × level + jump (log(weight), log(level), log(jump)) - three.js animation:<br>🧵⬇️</p><p>1: The natural numbers (A000027) ➡️ <a href="https://decompwlj.com/3DgraphGen/Natural_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Natur</span><span class="invisible">al_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>Generation of four sequences decomposed into weight × level + jump (log(weight), log(level), log(jump)) - three.js animation:<br>🧵⬇️</p><p>1: The natural numbers (A000027) ➡️ <a href="https://decompwlj.com/3DgraphGen/Natural_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Natur</span><span class="invisible">al_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Fabrizio Musacchio<p>And as an added bonus: Dileep George, one of the authors of the paper, just shared a <a href="https://sigmoid.social/tags/JupyterNotebook" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JupyterNotebook</span></a> demo 🐍📔. You can explore the <a href="https://sigmoid.social/tags/CSCG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CSCG</span></a> model, visualize <a href="https://sigmoid.social/tags/PlaceFields" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PlaceFields</span></a>, and inspect the learned <a href="https://sigmoid.social/tags/latent" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>latent</span></a> <a href="https://sigmoid.social/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> 📈 Just try it out, it's great fun 👌</p><p>🌍 <a href="https://colab.research.google.com/drive/1kgjuoz_Noo7uV87StSbW7T8-IBQmPOLE?usp=sharing#scrollTo=7jnInNH7RUAX" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">colab.research.google.com/driv</span><span class="invisible">e/1kgjuoz_Noo7uV87StSbW7T8-IBQmPOLE?usp=sharing#scrollTo=7jnInNH7RUAX</span></a></p><p><a href="https://sigmoid.social/tags/Hippocampus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hippocampus</span></a> <a href="https://sigmoid.social/tags/CognitiveMaps" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CognitiveMaps</span></a> <a href="https://sigmoid.social/tags/CSCG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CSCG</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/ComputationalModeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalModeling</span></a> <a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a></p>
Fabrizio Musacchio<p>This paper by Raju et al. proposes a unified model – “clone‑structured causal <a href="https://sigmoid.social/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a>” (<a href="https://sigmoid.social/tags/CSCG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CSCG</span></a>) – for <a href="https://sigmoid.social/tags/hippocampal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hippocampal</span></a> <a href="https://sigmoid.social/tags/SpatialCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpatialCoding</span></a>. It suggests that <a href="https://sigmoid.social/tags/SpatialMaps" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpatialMaps</span></a> arise from <a href="https://sigmoid.social/tags/learning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>learning</span></a> <a href="https://sigmoid.social/tags/latent" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>latent</span></a> higher‑order sequences rather than representing <a href="https://sigmoid.social/tags/EuclideanSpace" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EuclideanSpace</span></a> directly. The model elegantly explains phenomena like <a href="https://sigmoid.social/tags/PlaceFields" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PlaceFields</span></a>, <a href="https://sigmoid.social/tags/SplitterCells" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SplitterCells</span></a>, <a href="https://sigmoid.social/tags/contextual" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>contextual</span></a> <a href="https://sigmoid.social/tags/remapping" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>remapping</span></a>, and predicts when <a href="https://sigmoid.social/tags/PlaceFieldMapping" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PlaceFieldMapping</span></a> may mislead.</p><p>🌍 <a href="https://www.science.org/doi/10.1126/sciadv.adm8470" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">science.org/doi/10.1126/sciadv</span><span class="invisible">.adm8470</span></a></p><p><a href="https://sigmoid.social/tags/Hippocampus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hippocampus</span></a> <a href="https://sigmoid.social/tags/CognitiveMaps" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CognitiveMaps</span></a> <a href="https://sigmoid.social/tags/SequenceLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SequenceLearning</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a></p>
Rémi Eismann<p>Generation of four sequences decomposed into weight × level + jump (log(weight), log(level), log(jump)) - three.js animation:<br>🧵⬇️</p><p>1: The natural numbers (A000027) ➡️ <a href="https://decompwlj.com/3DgraphGen/Natural_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Natur</span><span class="invisible">al_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
LLMsSemantic Search Advisory and Implementation for an Online Healthcare Information Provider The medical field is an extremely complex space, with thousands of concepts that are referred to by vastly ...<br><br><a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/Enterprise" target="_blank">#Enterprise</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/Search" target="_blank">#Search</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/Knowledge" target="_blank">#Knowledge</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/Graphs" target="_blank">#Graphs</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/&amp;" target="_blank">#&amp;</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/Data" target="_blank">#Data</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/Modeling" target="_blank">#Modeling</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/enterprise" target="_blank">#enterprise</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/ai" target="_blank">#ai</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/enterprise" target="_blank">#enterprise</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/LLM" target="_blank">#LLM</a><br><br><a href="https://enterprise-knowledge.com/semantic-search-advisory-and-implementation-for-an-online-healthcare-information-provider/" rel="nofollow noopener" target="_blank">Origin</a> | <a href="https://awakari.com/sub-details.html?id=LLMs" rel="nofollow noopener" target="_blank">Interest</a> | <a href="https://awakari.com/pub-msg.html?id=QDM8C9JdXSEdaiQwcGq4XiFPhh2&amp;interestId=LLMs" rel="nofollow noopener" target="_blank">Match</a>
Rémi Eismann<p>Now this animation is available for the 1000 sequences decomposed on my website.<br>Accessible from the 3Dgraph, 2Dgraph500terms and 2dgraphs pages ➡️ <a href="https://decompwlj.com" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">decompwlj.com</span><span class="invisible"></span></a><br>A little more work on axis sizing and controls.</p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>4: The palindromes in base 10 (A002113) ➡️ <a href="https://decompwlj.com/3DgraphGen/Palindromes.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Palin</span><span class="invisible">dromes.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>3: The triangular numbers (A000217) ➡️ <a href="https://decompwlj.com/3DgraphGen/Triangular_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Trian</span><span class="invisible">gular_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>2: The prime numbers (A000040) ➡️ <a href="https://decompwlj.com/3DgraphGen/Prime_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Prime</span><span class="invisible">_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Rémi Eismann<p>Generation of four sequences decomposed into weight × level + jump (log(weight), log(level), log(jump)) - three.js animation:<br>🧵⬇️</p><p>1: The natural numbers (A000027) ➡️ <a href="https://decompwlj.com/3DgraphGen/Natural_numbers.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">decompwlj.com/3DgraphGen/Natur</span><span class="invisible">al_numbers.html</span></a></p><p><a href="https://mathstodon.xyz/tags/decompwlj" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decompwlj</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/sequence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequence</span></a> <a href="https://mathstodon.xyz/tags/OEIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OEIS</span></a> <a href="https://mathstodon.xyz/tags/JavaScript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JavaScript</span></a> <a href="https://mathstodon.xyz/tags/php" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>php</span></a> <a href="https://mathstodon.xyz/tags/graph" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graph</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/threejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>threejs</span></a> <a href="https://mathstodon.xyz/tags/webGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>webGL</span></a> <a href="https://mathstodon.xyz/tags/triangular" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>triangular</span></a> <a href="https://mathstodon.xyz/tags/numbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numbers</span></a> <a href="https://mathstodon.xyz/tags/primes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>primes</span></a> <a href="https://mathstodon.xyz/tags/PrimeNumbers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PrimeNumbers</span></a> <a href="https://mathstodon.xyz/tags/palindromes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palindromes</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/FundamentalTheoremOfArithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FundamentalTheoremOfArithmetic</span></a> <a href="https://mathstodon.xyz/tags/sequences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sequences</span></a> <a href="https://mathstodon.xyz/tags/NumberTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumberTheory</span></a> <a href="https://mathstodon.xyz/tags/classification" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>classification</span></a> <a href="https://mathstodon.xyz/tags/integer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>integer</span></a> <a href="https://mathstodon.xyz/tags/decomposition" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decomposition</span></a> <a href="https://mathstodon.xyz/tags/number" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>number</span></a> <a href="https://mathstodon.xyz/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mathstodon.xyz/tags/equation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>equation</span></a> <a href="https://mathstodon.xyz/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> <a href="https://mathstodon.xyz/tags/sieve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sieve</span></a> <a href="https://mathstodon.xyz/tags/fundamental" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fundamental</span></a> <a href="https://mathstodon.xyz/tags/theorem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theorem</span></a> <a href="https://mathstodon.xyz/tags/arithmetic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arithmetic</span></a> <a href="https://mathstodon.xyz/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Jason Beets<p>I have covered the results of elections for the US House of Representatives. </p><p><a href="https://jasonbeets.blogspot.com/2025/01/house-of-representatives.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">jasonbeets.blogspot.com/2025/0</span><span class="invisible">1/house-of-representatives.html</span></a></p><p>8/x</p><p><a href="https://newsie.social/tags/USA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>USA</span></a> <a href="https://newsie.social/tags/House" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>House</span></a> <a href="https://newsie.social/tags/Congress" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Congress</span></a> <a href="https://newsie.social/tags/Election" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Election</span></a> <a href="https://newsie.social/tags/Politics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Politics</span></a> <a href="https://newsie.social/tags/Graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Graphs</span></a> <a href="https://newsie.social/tags/Infographic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Infographic</span></a> <a href="https://newsie.social/tags/Data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Data</span></a></p>