mastodon.world is one of the many independent Mastodon servers you can use to participate in the fediverse.
Generic Mastodon server for anyone to use.

Server stats:

9.6K
active users

#learningbayesianstatistics

0 posts0 participants0 posts today
Pierre-Simon Laplace<p>🥳𝐖𝐞 𝐦𝐚𝐝𝐞 𝐢𝐭 𝐭𝐨 𝐭𝐡𝐞 𝐓𝐎𝐏 15!</p><p>🏆 We’re beyond excited to share that 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐁𝐚𝐲𝐞𝐬𝐢𝐚𝐧 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 has been recognized as one of the Top 15 Statistics Podcasts by Feedspot!</p><p>🙏 Thanks to our guests for sharing their knowledge, and of course, to all of you for tuning in, sending feedback!</p><p><a href="https://mstdn.science/tags/LearningBayesianStatistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LearningBayesianStatistics</span></a> <a href="https://mstdn.science/tags/podcast" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>podcast</span></a> <a href="https://mstdn.science/tags/awards" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>awards</span></a> <a href="https://mstdn.science/tags/datascience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datascience</span></a> <a href="https://mstdn.science/tags/machinelearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>machinelearning</span></a></p>
Pierre-Simon Laplace<p>🔴 𝐇𝐨𝐰 𝐓𝐨 𝐅𝐨𝐜𝐮𝐬 𝐎𝐧 𝐖𝐡𝐚𝐭 𝐌𝐚𝐭𝐭𝐞𝐫𝐬 𝐈𝐧 𝐓𝐢𝐦𝐞 𝐒𝐞𝐫𝐢𝐞𝐬 𝐅𝐨𝐫𝐞𝐜𝐚𝐬𝐭𝐢𝐧𝐠<br>🔗 <a href="https://learnbayesstats.com/episode/124-state-space-models-structural-time-series-jesse-grabowski" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">learnbayesstats.com/episode/12</span><span class="invisible">4-state-space-models-structural-time-series-jesse-grabowski</span></a></p><p>✅ 𝐈𝐧 𝐭𝐡𝐢𝐬 𝐄𝐩𝐢𝐬𝐨𝐝𝐞, 𝐲𝐨𝐮’𝐥𝐥 𝐥𝐞𝐚𝐫𝐧 𝐡𝐨𝐰 𝐭𝐨 𝐚𝐜𝐡𝐢𝐞𝐯𝐞 𝐭𝐡𝐚𝐭 with <span class="h-card" translate="no"><a href="https://bayes.club/@pymc" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>pymc</span></a></span> </p><p>Alex Andorra &amp; Jesse Grabowski talk about state space models, simplifying forecasting, applications etc.</p><p><a href="https://mstdn.science/tags/LearningBayesianStatistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LearningBayesianStatistics</span></a> <a href="https://mstdn.science/tags/PyMC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyMC</span></a> <a href="https://mstdn.science/tags/forecasting" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>forecasting</span></a> <a href="https://mstdn.science/tags/timeseries" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>timeseries</span></a></p>
Pierre-Simon Laplace<p>📢 Episode 122 is Live! <br>🎧<a href="https://learnbayesstats.com/episode/122-learning-and-teaching-in-the-age-of-ai-hugo-bowne-anderson" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">learnbayesstats.com/episode/12</span><span class="invisible">2-learning-and-teaching-in-the-age-of-ai-hugo-bowne-anderson</span></a></p><p>🎙️ In this episode of LBS, Alexandre Andorra chats with Hugo Bowne-Anderson about Learning and Teaching in the Age of AI!</p><p><a href="https://mstdn.science/tags/LearningBayesianStatistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LearningBayesianStatistics</span></a> <a href="https://mstdn.science/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a></p>
Pierre-Simon Laplace<p>📢 Episode 120 is Live!</p><p><a href="https://learnbayesstats.com/episodes/8f372809-3905-4110-8e1b-2f5ca1f95b33" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">learnbayesstats.com/episodes/8</span><span class="invisible">f372809-3905-4110-8e1b-2f5ca1f95b33</span></a></p><p>🎙️ In this LBS episode, Alexandre Andorra, Liza Semenova, and Chris Wymant explore the intersection of epidemiology, Bayesian statistics, and data science!</p><p><a href="https://mstdn.science/tags/LearningBayesianStatistics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LearningBayesianStatistics</span></a> <a href="https://mstdn.science/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a></p>