mastodon.world is one of the many independent Mastodon servers you can use to participate in the fediverse.
Generic Mastodon server for anyone to use.

Server stats:

8.2K
active users

#pymc

0 posts0 participants0 posts today
PyMC developers<p>PyMC is in Google Summer of Code 2025!</p><p>We're excited to be part of <a href="https://bayes.club/tags/GSoC2025" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GSoC2025</span></a> under <span class="h-card" translate="no"><a href="https://mastodon.social/@NumFOCUS" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>NumFOCUS</span></a></span> If you're passionate about <a href="https://bayes.club/tags/Bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Bayesian</span></a> stats &amp; <a href="https://bayes.club/tags/OpenSource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenSource</span></a>, this is your chance to contribute to <a href="https://bayes.club/tags/PyMC" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PyMC</span></a>!</p><p>📅 Deadline: April 8, 18:00 UTC<br>🔗 Apply now: <a href="https://www.pymc.io/blog/blog_gsoc_2025_announcement.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">pymc.io/blog/blog_gsoc_2025_an</span><span class="invisible">nouncement.html</span></a></p>
EuroSciPy<p>Advancing probabilistic programming for scientific applications?</p><p><a href="https://fosstodon.org/tags/EuroSciPy2025" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EuroSciPy2025</span></a> welcomes original research on Bayesian methods, MCMC algorithms, and statistical modeling in <a href="https://fosstodon.org/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a>.</p><p>Submit your work as tutorials, talks, or posters!</p><p><a href="https://fosstodon.org/tags/BayesianStatistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BayesianStatistics</span></a> <a href="https://fosstodon.org/tags/ScientificPython" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScientificPython</span></a> <a href="https://fosstodon.org/tags/PyMC" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PyMC</span></a> <a href="https://fosstodon.org/tags/PyStan" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PyStan</span></a> <a href="https://fosstodon.org/tags/EuroSciPy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EuroSciPy</span></a></p>
EuroSciPy<p>Developing Bayesian inference methods for complex scientific problems?</p><p><a href="https://fosstodon.org/tags/EuroSciPy2025" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EuroSciPy2025</span></a> is seeking original work on Hamiltonian Monte Carlo, variational inference, and statistical modeling in <a href="https://fosstodon.org/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a>.</p><p>Submit your innovations: <a href="https://pretalx.com/euroscipy-2025/cfp" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">pretalx.com/euroscipy-2025/cfp</span><span class="invisible"></span></a> <a href="https://fosstodon.org/tags/CfP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CfP</span></a></p><p><a href="https://fosstodon.org/tags/BayesianStatistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BayesianStatistics</span></a> <a href="https://fosstodon.org/tags/ScientificPython" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScientificPython</span></a> <a href="https://fosstodon.org/tags/BayesianInference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BayesianInference</span></a> <a href="https://fosstodon.org/tags/PyMC" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PyMC</span></a> <a href="https://fosstodon.org/tags/PyStan" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PyStan</span></a> <a href="https://fosstodon.org/tags/EuroSciPy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EuroSciPy</span></a></p>
Pierre-Simon Laplace<p>📢 Episode 126 is Live! </p><p>🎧 Listen now 👉 <a href="https://learnbayesstats.com/episode/126-mmm-clv-bayesian-marketing-analytics-will-dean" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">learnbayesstats.com/episode/12</span><span class="invisible">6-mmm-clv-bayesian-marketing-analytics-will-dean</span></a></p><p>🎙️ In this episode with <br> Alex Andorra, Will Dean from <br>PyMC-Labs explains how Bayesian methods are reshaping marketing analytics, from MMM to CLV estimation and more ....</p><p><a href="https://mstdn.science/tags/BayesianMarketing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BayesianMarketing</span></a> <a href="https://mstdn.science/tags/MMM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MMM</span></a> <a href="https://mstdn.science/tags/CLV" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CLV</span></a> <a href="https://mstdn.science/tags/MarketingAnalytics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MarketingAnalytics</span></a> <a href="https://mstdn.science/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://mstdn.science/tags/ProbabilisticProgramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ProbabilisticProgramming</span></a> <a href="https://mstdn.science/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mstdn.science/tags/PyMC" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PyMC</span></a> <a href="https://mstdn.science/tags/Marketing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Marketing</span></a></p>

🔴 𝐇𝐨𝐰 𝐓𝐨 𝐅𝐨𝐜𝐮𝐬 𝐎𝐧 𝐖𝐡𝐚𝐭 𝐌𝐚𝐭𝐭𝐞𝐫𝐬 𝐈𝐧 𝐓𝐢𝐦𝐞 𝐒𝐞𝐫𝐢𝐞𝐬 𝐅𝐨𝐫𝐞𝐜𝐚𝐬𝐭𝐢𝐧𝐠
🔗 learnbayesstats.com/episode/12

✅ 𝐈𝐧 𝐭𝐡𝐢𝐬 𝐄𝐩𝐢𝐬𝐨𝐝𝐞, 𝐲𝐨𝐮’𝐥𝐥 𝐥𝐞𝐚𝐫𝐧 𝐡𝐨𝐰 𝐭𝐨 𝐚𝐜𝐡𝐢𝐞𝐯𝐞 𝐭𝐡𝐚𝐭 with @pymc

Alex Andorra & Jesse Grabowski talk about state space models, simplifying forecasting, applications etc.

Learning about PyMC makes me want to become a statistician.. super interesting way to think about data, but so much goes into building a good model! So many rabbit holes.

Bayesian modelling is clearly super powerful though and seems to offer some answers to some of the most intractable problems with black-box ML. A reliable model with known and understandable inputs is invaluable for certain use cases.

Replied in thread

@charleemos I have found both the #PyMC tutorials (pymc.io/projects/docs/en/lates) and the #Stan User's Guide (mc-stan.org/docs/stan-users-gu) on #GaussianProcesses good for getting your hands dirty. Seeing GPs in action and fiddling with hyperparameters was helpful for me to understand the mathematical underpinnings.

www.pymc.ioGaussian Processes — PyMC dev documentation

📢 Calling all data science enthusiasts and PyMC users!

We're excited to announce the PyMC Docathon on November 17th at 3 PM CET (9 AM ET). This is your chance to contribute to the open-source community and help enhance the PyMC example gallery and documentation.

📆 Save the date: Nov 17, 3pm CET / 14 UTC / 6am PT / 9am ET
🔗 Sign up here: meetup.com/pymc-online-meetup/
👉 Join the PyMC Discord Server: discord.gg/g9vefGNEMH

🤝 Lets meet, collaborate, and network with fellow Bayesian enthusiasts. #pymc

MeetupPyMC Docathon - Elevate Open Source Documentation!, Fri, Nov 17, 2023, 9:00 AM | Meetup**📅 Date: Friday\, November 17\, 2023 \| ⏰ Time: 14 UTC / 6 am PT / 9 am ET** Calling all data enthusiasts, Bayesian developers, and contributors to the open-source commu

📢 The PyMC community team will be holding office hours to provide an outlet for the community to ask questions, get help, discuss, etc. Office hours are open to everyone, and anyone should feel welcome to attend

📅 Date: Wednesday, 1st Nov, 2023
⏰ Time: 19 UTC / 12 pm PT / 3 pm ET
📍 Where: Online, on Zoom
👉 Register (for Zoom link): meetup.com/pymc-online-meetup/

Office hours will last about an hour, so don't worry if you can't make it at exactly this time! see you there

MeetupPyMC Office Hours, Wed, Nov 1, 2023, 3:00 PM | Meetup**📅 Date: Wednesday\, November 01\, 2023 \| ⏰ Time: 19 UTC / 12 pm PT / 3 pm ET** The PyMC community team will be holding office hours to provide an outlet for the commun

🚀 PyMC 5.8.0 is here, packed with some fantastic updates and improvements. 🎉

🆕 New Features:
1️⃣ Causal inference: added the do operator for modeling interventions
2️⃣ Added ICAR distribution
3️⃣ Added JAX implementation for MatrixIsPositiveDefinite Op

📒 New example NB 👉 Faster Sampling with JAX and Numba, pymc.io/projects/examples/en/l
... And many more exciting updates, view the summary of changes here 👉 github.com/pymc-devs/pymc/rele