mastodon.world is one of the many independent Mastodon servers you can use to participate in the fediverse.
Generic Mastodon server for anyone to use.

Server stats:

8.1K
active users

#scikitlearn

1 post1 participant0 posts today
IB Teguh TM<p>nlock ML mastery with this Scikit-Learn tutorial! Step-by-step guidance to build &amp; optimize models. Perfect for beginners! <a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://mastodon.social/tags/ScikitLearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScikitLearn</span></a> <a href="https://mastodon.social/tags/Tutorial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Tutorial</span></a></p><p><a href="https://teguhteja.id/scikit-learn-crash-course-13-steps-machine-learning/?utm_source=mastodon&amp;utm_medium=jetpack_social" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">teguhteja.id/scikit-learn-cras</span><span class="invisible">h-course-13-steps-machine-learning/?utm_source=mastodon&amp;utm_medium=jetpack_social</span></a></p>
KubernetesHow Much Docker Should a Data Scientist Know? The best answers are obviously “some”, “depends”, or begin with “Well…”. Let’s do a deeper dive and attempt to understand where and how...<br><br><a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/Features" target="_blank">#Features</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/data" target="_blank">#data</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/science" target="_blank">#science</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/Docker" target="_blank">#Docker</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/Kubernetes" target="_blank">#Kubernetes</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/machine" target="_blank">#machine</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/learning" target="_blank">#learning</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/MLOps" target="_blank">#MLOps</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/PyTorch" target="_blank">#PyTorch</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/scikit-learn" target="_blank">#scikit-learn</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/TensorFlow" target="_blank">#TensorFlow</a><br><br><a href="https://www.bigdatawire.com/2025/08/18/how-much-docker-should-a-data-scientist-know/" rel="nofollow noopener" target="_blank">Origin</a> | <a href="https://awakari.com/sub-details.html?id=Kubernetes" rel="nofollow noopener" target="_blank">Interest</a> | <a href="https://awakari.com/pub-msg.html?id=HGYuLaZiKROe9CLtd4sqNpPhfma&amp;interestId=Kubernetes" rel="nofollow noopener" target="_blank">Match</a>
Habr<p>Titanic + CatBoost (Первое решение, первый Jupyter Notebook)</p><p>Решение первого соревнования на kaggle титаник с помощью библиотеки от яндекса catboost. Два способа: обычная модель и второй: с перебором гиперпараметров с помощью randomizedsearch. Сравнение результатов.</p><p><a href="https://habr.com/ru/articles/935540/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">habr.com/ru/articles/935540/</span><span class="invisible"></span></a></p><p><a href="https://zhub.link/tags/kaggle" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>kaggle</span></a> <a href="https://zhub.link/tags/titanic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>titanic</span></a> <a href="https://zhub.link/tags/ml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ml</span></a> <a href="https://zhub.link/tags/%D0%BC%D0%B0%D1%88%D0%B8%D0%BD%D0%BD%D0%BE%D0%B5%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>машинноеобучение</span></a> <a href="https://zhub.link/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> <a href="https://zhub.link/tags/scikitlearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scikitlearn</span></a> <a href="https://zhub.link/tags/catboost" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>catboost</span></a> <a href="https://zhub.link/tags/eda" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>eda</span></a> <a href="https://zhub.link/tags/%D1%81%D0%BE%D1%80%D0%B5%D0%B2%D0%BD%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>соревнование</span></a> <a href="https://zhub.link/tags/juniorml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>juniorml</span></a></p>
EuroSciPy<p>87/97<br>Circling back to our program details! Our Beginner Tutorial Track is for absolute beginners, covering the fundamentals: intro to <a href="https://fosstodon.org/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a>, <a href="https://fosstodon.org/tags/NumPy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NumPy</span></a>, <a href="https://fosstodon.org/tags/Pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pandas</span></a>, <a href="https://fosstodon.org/tags/ScikitLearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScikitLearn</span></a>, and <a href="https://fosstodon.org/tags/DataVisualization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataVisualization</span></a>.</p>
Posit<p>Announcing streamlined MLOps with Orbital on Databricks 🛰️🧱</p><p>Orbital translates <a href="https://fosstodon.org/tags/ScikitLearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScikitLearn</span></a> <a href="https://fosstodon.org/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> or <a href="https://fosstodon.org/tags/tidymodels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tidymodels</span></a> <a href="https://fosstodon.org/tags/RStats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RStats</span></a> to native <a href="https://fosstodon.org/tags/SQL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SQL</span></a> for direct database model execution.</p><p>Edgar Ruiz's post uses <a href="https://fosstodon.org/tags/Databricks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Databricks</span></a> as an integrated environment.</p><p>Learn more: <a href="https://posit.co/blog/databricks-orbital-r-python-model-deployment/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">posit.co/blog/databricks-orbit</span><span class="invisible">al-r-python-model-deployment/</span></a></p>
Alexandre B A Villares 🐍<p>Lazy-fedi-question... I have a "working"(?) code example of TF-IDF <a href="https://ciberlandia.pt/tags/tfidf" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tfidf</span></a> using <a href="https://ciberlandia.pt/tags/scikitlearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scikitlearn</span></a> and I know the main concepts, but all the tutorials I find are a bit — I don't want to be harsh but —crappy... Can someone point me to some nice open resource on it?</p>
Habr<p>Нейросеть приближается к опыту профессионального дерматолога</p><p>Наконец наступило лето, а с ним и пора отпусков. Уезжая на южные моря, не забывайте: большинство из нас имеет типичную для северянина кожу с пониженным содержанием меланина — пигмента, отвечающего за защиту от ультрафиолета. Если кожа отреагировала непонятным новообразованием, вызывающим опасения, теперь можно проконсультироваться с искусственным интеллектом. Он предварительно осмотрит кожу и посоветует, бежать ли ко врачу, за которым, конечно, всегда последнее слово. К слову, данная медицинская ИИ-технология, как и публикация, не является медицинской рекомендацией: диагноз ставит лечащий врач.</p><p><a href="https://habr.com/ru/companies/leader-id/articles/924702/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">habr.com/ru/companies/leader-i</span><span class="invisible">d/articles/924702/</span></a></p><p><a href="https://zhub.link/tags/%D0%BC%D0%B5%D0%B4%D0%B8%D1%86%D0%B8%D0%BD%D0%B0" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>медицина</span></a> <a href="https://zhub.link/tags/%D0%BA%D1%80%D0%B0%D1%81%D0%BE%D1%82%D0%B0_%D0%B8_%D0%B7%D0%B4%D0%BE%D1%80%D0%BE%D0%B2%D1%8C%D0%B5" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>красота_и_здоровье</span></a> <a href="https://zhub.link/tags/%D0%BF%D1%80%D0%B8%D0%BB%D0%BE%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>приложения</span></a> <a href="https://zhub.link/tags/%D1%81%D0%B2%D0%B5%D1%80%D1%82%D0%BE%D1%87%D0%BD%D1%8B%D0%B5_%D1%81%D0%B5%D1%82%D0%B8" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>сверточные_сети</span></a> <a href="https://zhub.link/tags/%D0%BD%D0%B5%D0%B9%D1%80%D0%BE%D1%81%D0%B5%D1%82%D0%B8" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>нейросети</span></a> <a href="https://zhub.link/tags/%D0%BF%D0%BE%D0%B8%D1%81%D0%BA_%D0%BF%D0%BE_%D0%B8%D0%B7%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F%D0%BC" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>поиск_по_изображениям</span></a> <a href="https://zhub.link/tags/%D1%81%D1%82%D0%B0%D1%80%D1%82%D0%B0%D0%BF%D1%8B" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>стартапы</span></a> <a href="https://zhub.link/tags/%D1%80%D0%B0%D0%B7%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0_%D0%BF%D1%80%D0%B8%D0%BB%D0%BE%D0%B6%D0%B5%D0%BD%D0%B8%D0%B9" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>разработка_приложений</span></a> <a href="https://zhub.link/tags/scikitlearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scikitlearn</span></a> <a href="https://zhub.link/tags/opencv" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opencv</span></a></p>
Habr<p>Главное по ML/DL, часть 2: Вопрос → Краткий ответ → Разбор → Пример кода. SVD/PCA. Bias-variance. Деревья. Бустинг</p><p>У каждого наступает момент, когда нужно быстро освежить в памяти огромный пласт информации по всему ML. Причины разные - подготовка к собеседованию, начало преподавания или просто найти вдохновение. Времени мало, объема много, цели амбициозные - нужно научиться легко и быстро объяснять , но так же не лишая полноты! 💻 Обращу внимание, самый действенный способ разобраться и запомнить - это своими руками поисследовать задачу ! Это самое важное, оно происходит в секции с кодом. Поэтому попробуйте сами решить предложенную задачку и придумать свою! Будет здорово получить ваши задачи и в следующих выпусках разобрать! Мы продолжаем. Обязательно испытайте себя в предыдущей [1] части! В лес, так в лес!</p><p><a href="https://habr.com/ru/articles/921190/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">habr.com/ru/articles/921190/</span><span class="invisible"></span></a></p><p><a href="https://zhub.link/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> <a href="https://zhub.link/tags/ds" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ds</span></a> <a href="https://zhub.link/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://zhub.link/tags/scikitlearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scikitlearn</span></a> <a href="https://zhub.link/tags/svd" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>svd</span></a> <a href="https://zhub.link/tags/pca" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pca</span></a> <a href="https://zhub.link/tags/Biasvariance_tradeoff" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Biasvariance_tradeoff</span></a> <a href="https://zhub.link/tags/random_forest" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>random_forest</span></a> <a href="https://zhub.link/tags/gradient_boosting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gradient_boosting</span></a> <a href="https://zhub.link/tags/%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D1%8B" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>алгоритмы</span></a></p>
Habr<p>[Перевод] Линейная регрессия в ML для самых маленьких</p><p>В мире машинного обучения есть много всего интересного, но тем, кто только начинает свой путь в этой области часто бывает многое непонятно. В этой статье мы попробуем разобраться с линейной регрессией. Линейная регрессия — это статистический метод, используемый для моделирования взаимосвязи между зависимой переменной и одной или несколькими независимыми переменными. Проще говоря, он помогает понять, как изменение одного или нескольких предикторов (независимых переменных) влияет на результат (зависимую переменную). Подумайте об этом, как о проведении прямой линии через диаграмму рассеяния точек данных, которая наилучшим образом отражает связь между этими точками.</p><p><a href="https://habr.com/ru/companies/otus/articles/919258/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">habr.com/ru/companies/otus/art</span><span class="invisible">icles/919258/</span></a></p><p><a href="https://zhub.link/tags/ml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ml</span></a> <a href="https://zhub.link/tags/linear_regression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>linear_regression</span></a> <a href="https://zhub.link/tags/%D0%BB%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>линейная_регрессия</span></a> <a href="https://zhub.link/tags/%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB%D0%B8" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>обучение_модели</span></a> <a href="https://zhub.link/tags/scikitlearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scikitlearn</span></a> <a href="https://zhub.link/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://zhub.link/tags/data_science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data_science</span></a></p>
Habr<p>Фундаментальные вопросы по ML/DL, часть 1: Вопрос → Краткий ответ → Разбор → Пример кода. Линейки. Байес. Регуляризация</p><p>У каждого наступает момент, когда нужно быстро освежить в памяти огромный пласт информации по всему ML. Причины разные - подготовка к собеседованию, начало преподавания или просто найти вдохновение. Времени мало, объема много, цели амбициозные - нужно научиться легко и быстро объяснять , но так же не лишая полноты! Обращу внимание, самый действенный способ разобраться и запомнить - это своими руками поисследовать задачу ! Это самое важное, оно происходит в секции с кодом. Будет здорово получить ваши задачи и в следующих выпусках разобрать! Взглянуть на старое под новым углом</p><p><a href="https://habr.com/ru/articles/918438/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">habr.com/ru/articles/918438/</span><span class="invisible"></span></a></p><p><a href="https://zhub.link/tags/machine_learning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machine_learning</span></a> <a href="https://zhub.link/tags/data_science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data_science</span></a> <a href="https://zhub.link/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://zhub.link/tags/scikitlearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scikitlearn</span></a> <a href="https://zhub.link/tags/ml%D0%B8%D0%BD%D1%82%D0%B5%D1%80%D0%B2%D1%8C%D1%8E" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlинтервью</span></a> <a href="https://zhub.link/tags/svm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>svm</span></a> <a href="https://zhub.link/tags/naive_bayes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>naive_bayes</span></a> <a href="https://zhub.link/tags/%D1%80%D0%B5%D0%B3%D1%83%D0%BB%D1%8F%D1%80%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>регуляризация</span></a> <a href="https://zhub.link/tags/%D0%BB%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>линейная_регрессия</span></a> <a href="https://zhub.link/tags/%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D1%8B" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>алгоритмы</span></a></p>
Gustavo P. Pereira<p>I was studying linear regression, and I decided to do a very basic project to consolidate some concepts. And I thought why not put it on GitHub for other people to take a look at. (API that predicts the sale price of a car)</p><p><a href="https://mastodon.social/tags/FastAPI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FastAPI</span></a> <a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://mastodon.social/tags/ScikitLearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScikitLearn</span></a> <a href="https://mastodon.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mastodon.social/tags/Portfolio" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Portfolio</span></a> <a href="https://mastodon.social/tags/API" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>API</span></a> </p><p><a href="https://github.com/GustavoGarciaPereira/projeto_carros_api" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/GustavoGarciaPereir</span><span class="invisible">a/projeto_carros_api</span></a></p>
LLMsMuch higher scoring metrics with classification_report than cross_validate – datascience.stacke...<br><br><a href="https://datascience.stackexchange.com/questions/133949/much-higher-scoring-metrics-with-classification-report-than-cross-validate" rel="nofollow noopener" target="_blank">https://datascience.stackexchange.com/questions/133949/much-higher-scoring-metrics-with-classification-report-than-cross-validate</a><br><br><a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/scikit-learn" target="_blank">#scikit-learn</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/cross-validation" target="_blank">#cross-validation</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/binary-classification" target="_blank">#binary-classification</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/data-leakage" target="_blank">#data-leakage</a><br><br><a href="https://awakari.com/pub-msg.html?id=VxxmWXfVhx9R4rmWvzE0YuIXGD2&amp;interestId=LLMs" rel="nofollow noopener" target="_blank">Result Details</a>
Habr<p>Scikit-learn теперь умеет в пайплайны: что изменилось и как работать с библиотекой в 2025 году</p><p>Scikit-learn — это одна из основных Python-библиотек для машинного обучения. Её подключают в прикладных проектах, AutoML-системах и учебных курсах — как базовый инструмент для работы с моделями. Даже если вы давно пишете на PyTorch или CatBoost, в задачах с табличными данными, скорее всего, всё ещё вызываете fit , predict , score — через sklearn. В 2025 году в библиотеку добавили несколько важных обновлений: доработали работу с пайплайнами, подключили полную поддержку pandas API, упростили контроль за экспериментами. Мы подготовили гайд, как работать со scikit-learn в 2025 году. Новичкам он поможет собрать первую ML-задачу — с данными, моделью и метриками. А тем, кто уже использует библиотеку, — освежить знания и понять, что изменилось в новых версиях. Почитать гайд →</p><p><a href="https://habr.com/ru/companies/netologyru/articles/911216/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">habr.com/ru/companies/netology</span><span class="invisible">ru/articles/911216/</span></a></p><p><a href="https://zhub.link/tags/scikitlearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scikitlearn</span></a> <a href="https://zhub.link/tags/sklearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sklearn</span></a> <a href="https://zhub.link/tags/%D0%BF%D0%B0%D0%B9%D0%BF%D0%BB%D0%B0%D0%B9%D0%BD" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>пайплайн</span></a> <a href="https://zhub.link/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://zhub.link/tags/pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pandas</span></a> <a href="https://zhub.link/tags/%D0%BC%D0%B0%D1%88%D0%B8%D0%BD%D0%BD%D0%BE%D0%B5_%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>машинное_обучение</span></a> <a href="https://zhub.link/tags/machine_learning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machine_learning</span></a> <a href="https://zhub.link/tags/ml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ml</span></a> <a href="https://zhub.link/tags/%D0%BA%D0%BB%D0%B0%D1%81%D1%81%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%86%D0%B8%D1%8F" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>классификация</span></a> <a href="https://zhub.link/tags/%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>регрессия</span></a></p>
Habr<p>Как из аналитики данных перейти в дата-сайентисты</p><p>Перевели и дополнили статью Марины Уисс, applied scientist (дата-сайентист со специализацией в прикладной статистике) в Twitch. Когда-то Марина перешла в IT из не связанной с технологиями сферы деятельности, а потом помогла с этим переходом многим людям без IT-бэкграунда. В этой статье она делится советами для дата-аналитиков, которым хотелось бы заниматься data science. А мы добавили мнение экспертов и рекомендации, актуальные для российских образовательных реалий.</p><p><a href="https://habr.com/ru/companies/netologyru/articles/905206/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">habr.com/ru/companies/netology</span><span class="invisible">ru/articles/905206/</span></a></p><p><a href="https://zhub.link/tags/%D0%BF%D1%80%D0%BE%D1%84%D0%B5%D1%81%D1%81%D0%B8%D1%8F_%D0%B4%D0%B0%D1%82%D0%B0_%D1%81%D0%B0%D0%B9%D0%B5%D0%BD%D1%82%D0%B8%D1%81%D1%82" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>профессия_дата_сайентист</span></a> <a href="https://zhub.link/tags/%D1%81%D1%82%D0%B0%D1%82%D1%8C_%D0%B4%D0%B0%D1%82%D0%B0%D1%81%D0%B0%D0%B9%D0%B5%D0%BD%D1%82%D0%B8%D1%81%D1%82%D0%BE%D0%BC" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>стать_датасайентистом</span></a> <a href="https://zhub.link/tags/data_science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data_science</span></a> <a href="https://zhub.link/tags/%D0%BF%D1%80%D0%BE%D0%B3%D0%BD%D0%BE%D0%B7%D1%8B_%D0%BD%D0%B0_%D0%B1%D1%83%D0%B4%D1%83%D1%89%D0%B5%D0%B5" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>прогнозы_на_будущее</span></a> <a href="https://zhub.link/tags/%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0_%D0%B8_%D1%81%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B0" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>математика_и_статистика</span></a> <a href="https://zhub.link/tags/scikitlearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scikitlearn</span></a> <a href="https://zhub.link/tags/tensorflow" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tensorflow</span></a> <a href="https://zhub.link/tags/pytorch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pytorch</span></a> <a href="https://zhub.link/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://zhub.link/tags/docker" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>docker</span></a></p>
LLMsКак я сделала свой первый AI-продукт с ChatGPT и капелькой...<br><br><a href="https://www.pvsm.ru/api/416884" rel="nofollow noopener" target="_blank">https://www.pvsm.ru/api/416884</a><br><br><a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/AI-Product" target="_blank">#AI-Product</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/api" target="_blank">#api</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/chatgpt-4" target="_blank">#chatgpt-4</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/data" target="_blank">#data</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/science" target="_blank">#science</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/flask" target="_blank">#flask</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/logistic" target="_blank">#logistic</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/regression" target="_blank">#regression</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/ml" target="_blank">#ml</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/python3" target="_blank">#python3</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/scikit-learn" target="_blank">#scikit-learn</a><br><br><a href="https://awakari.com/pub-msg.html?id=Ifk0myzZJ4aV7ZPGunPrMsr8qrA" rel="nofollow noopener" target="_blank">Event Attributes</a>
LLMsКак я сделала свой первый AI-продукт с ChatGPT и капелькой...<br><br><a href="https://habr.com/ru/articles/901548/?utm_source=habrahabr&amp;utm_medium=rss&amp;utm_campaign=901548" rel="nofollow noopener" target="_blank">https://habr.com/ru/articles/901548/?utm_source=habrahabr&amp;utm_medium=rss&amp;utm_campaign=901548</a><br><br><a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/python3" target="_blank">#python3</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/chatgpt-4" target="_blank">#chatgpt-4</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/api" target="_blank">#api</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/flask" target="_blank">#flask</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/AI-Product" target="_blank">#AI-Product</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/machine-learning" target="_blank">#machine-learning</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/logistic" target="_blank">#logistic</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/regression" target="_blank">#regression</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/scikit-learn" target="_blank">#scikit-learn</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/ml" target="_blank">#ml</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/data" target="_blank">#data</a><br><br><a href="https://awakari.com/pub-msg.html?id=XLIsiUjH5p4d5scvhMIDLhJJcIK" rel="nofollow noopener" target="_blank">Event Attributes</a>
Habr<p>Как я сделала свой первый AI-продукт с ChatGPT и капелькой любви</p><p>В этой статье я расскажу о моем опыте самостоятельного изучения основ Python и Machine Learning и создании первого проекта OneLove на базе собственной модели искусственного интеллекта (ИИ).</p><p><a href="https://habr.com/ru/articles/901548/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">habr.com/ru/articles/901548/</span><span class="invisible"></span></a></p><p><a href="https://zhub.link/tags/python3" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python3</span></a> <a href="https://zhub.link/tags/chatgpt4" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chatgpt4</span></a> <a href="https://zhub.link/tags/api" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>api</span></a> <a href="https://zhub.link/tags/flask" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>flask</span></a> <a href="https://zhub.link/tags/AIProduct" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIProduct</span></a> <a href="https://zhub.link/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> <a href="https://zhub.link/tags/logistic_regression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>logistic_regression</span></a> <a href="https://zhub.link/tags/scikitlearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scikitlearn</span></a> <a href="https://zhub.link/tags/ml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ml</span></a> <a href="https://zhub.link/tags/data_science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data_science</span></a></p>
Blue Headline - Tech News<p>🚗 GPUs can now accelerate vehicle intrusion detection by up to 159x compared to CPUs.<br>That’s not a tweak—it’s a leap.</p><p>A new study dives into how libraries like cuML outperform scikit-learn in real-time IoV security applications, all while maintaining accuracy.</p><p>Could this reshape how we secure connected vehicles at the edge?</p><p>🔗 Dive into the details: <a href="https://blueheadline.com/tech-news/gpu-faster-intrusion-detection-iov/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">blueheadline.com/tech-news/gpu</span><span class="invisible">-faster-intrusion-detection-iov/</span></a></p><p><a href="https://mastodon.social/tags/Technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Technology</span></a> <a href="https://mastodon.social/tags/CyberSecurity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CyberSecurity</span></a> <a href="https://mastodon.social/tags/IoV" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>IoV</span></a> <a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://mastodon.social/tags/EdgeComputing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EdgeComputing</span></a> <a href="https://mastodon.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mastodon.social/tags/GPUAcceleration" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GPUAcceleration</span></a> <a href="https://mastodon.social/tags/cuML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cuML</span></a> <a href="https://mastodon.social/tags/ScikitLearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScikitLearn</span></a> <a href="https://mastodon.social/tags/BlueHeadline" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BlueHeadline</span></a></p>
Technology Tales<p>Discover 10 effective Python one-liners for Scikit-learn that simplify your <a href="https://mstdn.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> tasks. These short snippets handle key operations like data import, splitting datasets, standardising features, PCA dimensionality reduction, and training SVM classifiers. Perfect for rapid experiments and cleaner code. <a href="https://mstdn.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://mstdn.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mstdn.social/tags/SoftwareDevelopment" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SoftwareDevelopment</span></a> <a href="https://mstdn.social/tags/ScikitLearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScikitLearn</span></a> <a href="https://mstdn.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://www.kdnuggets.com/10-python-one-liners-for-scikit-learn" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">kdnuggets.com/10-python-one-li</span><span class="invisible">ners-for-scikit-learn</span></a></p>
laguill<p>Hi <a href="https://fosstodon.org/tags/FediHelp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FediHelp</span></a> 👋<br>As I am learning <a href="https://fosstodon.org/tags/scikitlearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scikitlearn</span></a> do you have any resources to work with knn_imputer ?</p><p>I want to replace NAN values.</p><p>How do you<br>- Select optimized n_neighbors<br>- Visualize what the imputer do with plots or metrics</p><p>Any link to blog post or tutorials are welcome 🙂<br>Thanks</p><p><a href="https://fosstodon.org/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://fosstodon.org/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a></p>