mastodon.world is one of the many independent Mastodon servers you can use to participate in the fediverse.
Generic Mastodon server for anyone to use.

Server stats:

8.1K
active users

#hadoop

2 posts1 participant0 posts today

Влияние маленьких файлов на Big Data: HDFS vs S3

Привет, Хабр! Я Станислав Габдулгазиев, архитектор департамента поддержки продаж Arenadata. В этой статье рассмотрим, как большое количество мелких файлов влияет на производительность различных систем хранения, таких как HDFS и объектные хранилища с S3 API. Разберём, какие технологии хранения лучше всего подходят для работы с мелкими файлами в архитектурах Data Lake и Lakehouse . Сравним производительность HDFS и объектных хранилищ с S3 API . На конкретных тестах покажем, почему именно HDFS эффективнее справляется с большим количеством небольших файлов. Обсудим также случаи, когда мелкие файлы становятся не просто нежелательной ситуацией, а неизбежной необходимостью, например в подходах типа Change Data Capture (CDC). Тесты, графики, инсайды

habr.com/ru/companies/arenadat

ХабрВлияние маленьких файлов на Big Data: HDFS vs S3Привет, Хабр! Я Станислав Габдулгазиев, архитектор департамента поддержки продаж Arenadata. В этой статье рассмотрим, как большое количество мелких файлов влияет на производительность различных систем...
#bigdata#hdfs#s3

Соединение SortMergeJoin в Apache Spark

Рассмотрим, как реализован SortMergeJoin в Apache Spark, и заодно заглянем в исходный код на GitHub. Spark написан на языке Scala, и вся логика работы оператора доступна в открытом репозитории проекта. Вот здесь :) Первое, что рассмотрим - это конструктор кейс-класса 1. Конструктор SortMergeJoinExec

habr.com/ru/companies/gnivc/ar

ХабрСоединение SortMergeJoin в Apache SparkРассмотрим, как реализован SortMergeJoin в Apache Spark, и заодно заглянем в исходный код на GitHub. Spark написан на языке Scala, и вся логика работы оператора доступна в открытом репозитории...
#spark#join#hadoop

Как я удалил clickstream, но его восстановили из небытия

Всем привет! Я Дмитрий Немчин из Т-Банка. Расскажу не очень успешную историю о том как я удалил данные и что из этого вышло. В ИТ я больше 12 лет, начинал DBA и разработчиком в кровавом энтепрайзе с Oracle. В 2015 году познакомился с Greenplum в Т, да так тут и остался. С 2017 года стал лидить команду, потом все чуть усложнилось и команда стала не одна. Возможно, вы меня могли видеть как организатора Greenplum-митапов в России. Но команда командой, менеджмент менеджментом, а руки чешутся..

habr.com/ru/companies/tbank/ar

ХабрКак я удалил clickstream, но его восстановили из небытияВсем привет! Я Дмитрий Немчин из Т-Банка. Расскажу не очень успешную историю о том, как я удалил данные и что из этого вышло. В ИТ я больше 12 лет, начинал DBA и разработчиком в кровавом энтерпрайзе с...

Секреты Spark в Arenadata Hadoop: как мы ускорили построение витрин для задач ML

Привет, Хабр! Я Дмитрий Жихарев, CPO Платформы искусственного интеллекта RAISA в Лаборатории ИИ РСХБ-Интех. В этой статье я и архитектор нашей платформы Александр Рындин @aryndin9999 расскажем о том, как мы построили взаимодействие Платформы ИИ и Озера данных для работы с витринами данных моделей машинного обучения с использованием Spark.

habr.com/ru/companies/rshb/art

ХабрСекреты Spark в Arenadata Hadoop: как мы ускорили построение витрин для задач MLПривет, Хабр! Я Дмитрий Жихарев, CPO Платформы искусственного интеллекта RAISA в Лаборатории ИИ РСХБ-Интех. В этой статье я и архитектор нашей платформы Александр Рындин @aryndin9999 расскажем о том,...

Методы расширения атрибутивного состава таблиц БД

Представим себе картину из идеального мира данных, в котором всё стабильно, изменений нет и на горизонте не предвидятся. Аналитик полностью согласовал с заказчиком требования к витрине, спроектировал решение и передал в разработку. Разработчики внедрили витрину в продуктивный контур, пользователи счастливы, всё работает корректно — сопровождение разработчиков и аналитиков не требуется. Представили? Но, как мы знаем, «IT» и «изменения» — синонимы, поэтому в идеальном мире, как гром среди ясного неба, появляются новые требования: разработать инструмент для регулярного добавления в витрину данных новых атрибутов, на текущий момент в неизвестном количестве. Сразу отмечу, что решения и оценки, о которых пойдёт речь, подбирались для работы с большими данными на стеке технологий Apache Hadoop, где для обработки данных использовали фреймворк Apache Spark, СУБД — Apache Hive для анализа данных, оркестратор — Airflow, данные хранятся в колоночном формате Parquet.

habr.com/ru/companies/T1Holdin

ХабрМетоды расширения атрибутивного состава таблиц БДПредставим себе картину из идеального мира данных, в котором всё стабильно, изменений нет и на горизонте не предвидятся. Аналитик полностью согласовал с заказчиком требования...