mastodon.world is one of the many independent Mastodon servers you can use to participate in the fediverse.
Generic Mastodon server for anyone to use.

Server stats:

8.1K
active users

#causalinference

0 posts0 participants0 posts today
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #395 The n-of-1 randomized controlled trial: clinical usefulness</p><p>Thoughts: Could RCTs comprised of 1 participant be useful? Maybe! And more so than large sample observational studies.</p><p><a href="https://mastodon.social/tags/Nof1" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Nof1</span></a> <a href="https://mastodon.social/tags/RCTs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RCTs</span></a> <a href="https://mastodon.social/tags/causalinference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>causalinference</span></a> <a href="https://mastodon.social/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a> <a href="https://mastodon.social/tags/methods" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>methods</span></a> <a href="https://mastodon.social/tags/clinical" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>clinical</span></a></p><p><a href="https://pubmed.ncbi.nlm.nih.gov/2297206/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">pubmed.ncbi.nlm.nih.gov/229720</span><span class="invisible">6/</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #394 Difference-in-Differences Estimation</p><p>Thoughts: A bit of love for the python coders. DiD with lots of examples and estimators.</p><p><a href="https://mastodon.social/tags/did" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>did</span></a> <a href="https://mastodon.social/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://mastodon.social/tags/guide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>guide</span></a> <a href="https://mastodon.social/tags/observational" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>observational</span></a> <a href="https://mastodon.social/tags/TWFE" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TWFE</span></a> <a href="https://mastodon.social/tags/causalinference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>causalinference</span></a></p><p><a href="https://py-econometrics.github.io/pyfixest/difference-in-differences.html#pointwise-vs-simultaneous-inference-in-event-studies" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">py-econometrics.github.io/pyfi</span><span class="invisible">xest/difference-in-differences.html#pointwise-vs-simultaneous-inference-in-event-studies</span></a></p>
Joseph A di Paolantonio<p>It’s great to see causal Inference methods being used for this determination. Are better algorithms (than the near-far matching used) available that might be used in a judicial process causal digital twins to ameliorate these and other injustices in the future? Of course, getting rid of the bail system would make it moot. </p><p><a href="https://mastodon.social/tags/causalInference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>causalInference</span></a> <a href="https://mastodon.social/tags/causation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>causation</span></a> <a href="https://mastodon.social/tags/legal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>legal</span></a> <a href="https://mastodon.social/tags/justice" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>justice</span></a></p><p>From: <span class="h-card" translate="no"><a href="https://mastodon.social/@hrdag" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>hrdag</span></a></span><br><a href="https://mastodon.social/@hrdag/114902611019230490" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mastodon.social/@hrdag/1149026</span><span class="invisible">11019230490</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #392 Statistically Efficient Ways to Quantify Added Predictive Value of New Measurements (forum thread)</p><p>Thoughts: Forums can be great for asking the author for exact answers to complex questions</p><p><a href="https://mastodon.social/tags/modelselection" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modelselection</span></a> <a href="https://mastodon.social/tags/causalinference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>causalinference</span></a> <a href="https://mastodon.social/tags/prediction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>prediction</span></a> <a href="https://mastodon.social/tags/bias" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bias</span></a> <a href="https://mastodon.social/tags/information" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>information</span></a></p><p><a href="https://discourse.datamethods.org/t/statistically-efficient-ways-to-quantify-added-predictive-value-of-new-measurements/2013/1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">discourse.datamethods.org/t/st</span><span class="invisible">atistically-efficient-ways-to-quantify-added-predictive-value-of-new-measurements/2013/1</span></a></p>
Joe Roe<p><span class="h-card" translate="no"><a href="https://archaeo.social/@PCI_Archaeology" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>PCI_Archaeology</span></a></span> Very cool! If I'm not mistaken, this is the first published application of <a href="https://archaeo.social/tags/CausalInference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CausalInference</span></a> / causal DAGs to archaeology?</p>
Aneesh Sathe<p><strong>My Road to Bayesian&nbsp;Stats</strong></p><p class="">By 2015, I had heard of Bayesian Stats but didn’t bother to go deeper into it. After all, significance stars, and p-values worked fine. I started to explore Bayesian Statistics when considering small sample sizes in biological experiments. How much can you say when you are comparing means of 6 or even 60 observations? This is the nature work at the edge of knowledge. Not knowing what to expect is normal. Multiple possible routes to a seen a result is normal. Not knowing how to pick the route to the observed result is also normal. Yet, our statistics fails to capture this reality and the associated uncertainties. There must be a way I thought.&nbsp;</p><a href="https://aneeshsathe.com/wp-content/uploads/2025/07/image-from-rawpixel-id-2968487-jpeg.jpg" rel="nofollow noopener" target="_blank"></a>Free Curve to the Point: Accompanying Sound of Geometric Curves (1925) print in high resolution by Wassily Kandinsky. Original from The MET Museum. Digitally enhanced by rawpixel.<p>I started by searching for ways to overcome small sample sizes. There are minimum sample sizes recommended for t-tests. Thirty is an often quoted number with qualifiers. Bayesian stats does not have a minimum sample size. This had me intrigued. Surely, this can’t be a thing. But it is. Bayesian stats creates a mathematical model using your observations and then samples from that model to make comparisons. If you have any exposure to AI, you can think of this <em>a bit</em> like training an AI model. Of course the more data you have the better the model can be. But even with a little data we can make progress.&nbsp;</p><p>How do you say, there is something happening and it’s interesting, but we are only x% sure. Frequentist stats have no way through. All I knew was to apply the t-test and if there are “***” in the plot, I’m golden. That isn’t accurate though. Low p-values indicate the strength of evidence against the null hypothesis. Let’s take a minute to unpack that. The null hypothesis is that nothing is happening. If you have a control set and do a treatment on the other set, the null hypothesis says that there is no difference. So, a low p-value says that it is unlikely that the null hypothesis is true. But that does not imply that the alternative hypothesis <em>is</em> true. What’s worse is that there is no way for us to say that the control and experiment have no difference. We can’t accept the null hypothesis using p-values either.&nbsp;</p><p>Guess what? Bayes stats can do all those things. It can measure differences, accept and reject both&nbsp; null and alternative hypotheses, even communicate how uncertain we are (more on this later). All without making assumptions about our data.</p><p>It’s often overlooked, but frequentist analysis also requires the data to have certain properties like normality and equal variance. Biological processes have complex behavior and, unless observed, assuming normality and equal variance is perilous. The danger only goes up with small sample sizes. Again, Bayes requires you to make no assumptions about your data. Whatever shape the distribution is, so called outliers and all, it all goes into the model. Small sample sets do produce weaker fits, but this is kept transparent.&nbsp;</p><p>Transparency is one of the key strengths of Bayesian stats. It requires you to work a little bit harder on two fronts though. First you have to think about your data generating process (DGP). This means how do the data points you observe came to be. As we said, the process is often unknown. We have at best some guesses of how this could happen. Thankfully, we have a nice way to represent this. DAGs, directed acyclic graphs, are a fancy name for a simple diagram showing what affects what. Most of the time we are trying to discover the DAG, ie the pathway of a biological outcome. Even if you don’t do Bayesian stats, using DAGs to lay out your thoughts is a great. In Bayesian stats the DAGs can be used to test if your model fits the data we observe. If the DAG captures the data generating process the fit is good, and not if it doesn’t.&nbsp;</p><p>The other hard bit is doing analysis and communicating the results. Bayesian stats forces you to be verbose about your assumptions in your model. This part is almost magicked away in t-tests. Frequentist stats also makes assumptions about the model that your data is assumed to follow. It all happens so quickly that there isn’t even a second to think about it. You put in your data, click t-test and woosh! You see stars. In Bayesian stats stating the assumptions you make in your model (using DAGs and hypothesis about DGPs) communicates to the world what and why you think this phenomenon occurs.&nbsp;</p><p>Discovering causality is the whole reason for doing science. Knowing the causality allows us to intervene in the forms of treatments and drugs. But if my tools don’t allow me to be transparent and worse if they block people from correcting me, why bother?</p><p>Richard McElreath says it best:</p><blockquote><p>There is no method for making causal models other than science. There is no method to science other than honest anarchy.</p></blockquote><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/ai/" target="_blank">#AI</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/bayesian-statistics/" target="_blank">#BayesianStatistics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/biological-data-analysis/" target="_blank">#BiologicalDataAnalysis</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/business/" target="_blank">#Business</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/causal-inference-2/" target="_blank">#CausalInference</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/dags/" target="_blank">#DAGs</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/data-generating-process/" target="_blank">#DataGeneratingProcess</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/experimental-design/" target="_blank">#ExperimentalDesign</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/frequentist-vs-bayesian/" target="_blank">#FrequentistVsBayesian</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/leadership/" target="_blank">#Leadership</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/philosophy/" target="_blank">#philosophy</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/scientific-method/" target="_blank">#ScientificMethod</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/small-sample-size/" target="_blank">#SmallSampleSize</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/statistical-modeling/" target="_blank">#StatisticalModeling</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/statistical-philosophy/" target="_blank">#StatisticalPhilosophy</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/transparent-science/" target="_blank">#TransparentScience</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/uncertainty-quantification/" target="_blank">#UncertaintyQuantification</a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #391 {sensemakr} Sensitivity Analysis Tools for OLS</p><p>Thoughts: No unobserved variables is an untestable assumption, but you can quantify the robustness of your ATE.</p><p><a href="https://mastodon.social/tags/R" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>R</span></a> <a href="https://mastodon.social/tags/causalinference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>causalinference</span></a> <a href="https://mastodon.social/tags/observational" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>observational</span></a> <a href="https://mastodon.social/tags/inference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>inference</span></a> <a href="https://mastodon.social/tags/confounding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>confounding</span></a> <a href="https://mastodon.social/tags/bias" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bias</span></a> <a href="https://mastodon.social/tags/sensitivity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sensitivity</span></a></p><p><a href="https://carloscinelli.com/sensemakr/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">carloscinelli.com/sensemakr/</span><span class="invisible"></span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #387 Give Your Hypotheses Space!</p><p>Thoughts: "It’s tempting to throw a bunch of variables...into a model<br>...but proceed at your own caution!"</p><p><a href="https://mastodon.social/tags/Mbias" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mbias</span></a> <a href="https://mastodon.social/tags/causalinference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>causalinference</span></a> <a href="https://mastodon.social/tags/collider" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>collider</span></a> <a href="https://mastodon.social/tags/moderator" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>moderator</span></a> <a href="https://mastodon.social/tags/confounder" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>confounder</span></a> <a href="https://mastodon.social/tags/regression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>regression</span></a> <a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>r</span></a> <a href="https://mastodon.social/tags/DAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DAG</span></a></p><p><a href="https://brian-lookabaugh.github.io/website-brianlookabaugh/blog/2025/mutual-adjustment/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">brian-lookabaugh.github.io/web</span><span class="invisible">site-brianlookabaugh/blog/2025/mutual-adjustment/</span></a></p>
Aneesh Sathe<p><strong>Beyond the Dataset</strong></p><p>On the recent season of the show Clarkson’s farm, J.C. goes through great lengths to buy the right pub. As with any sensible buyer, the team does a thorough tear down followed by a big build up before the place is open for business. They survey how the place is built, located, and accessed. In their refresh they ensure that each part of the pub is built with purpose. Even the tractor on the ceiling. The art is&nbsp; in answering the question: <em>How was this place put together?&nbsp;</em></p><p>A data-scientist should be equally fussy. Until we trace how every number was collected, corrected and cleaned, —who measured it, what tool warped it, what assumptions skewed it—we can’t trust the next step in our business to flourish.</p><a href="https://aneeshsathe.com/wp-content/uploads/2025/07/image-from-rawpixel-id-3590280-jpeg.jpg" rel="nofollow noopener" target="_blank"></a>Old sound (1925) painting in high resolution by Paul Klee. Original from the Kunstmuseum Basel Museum. Digitally enhanced by rawpixel.<p><strong><strong>Two load-bearing pillars</strong></strong></p><p>While there are many flavors of data science I’m concerned about the analysis that is done in scientific spheres and startups. In this world, the structure held up by two pillars:</p><ol><li><strong>How we measure</strong> — the trip from reality to raw numbers. Feature extraction.</li><li><strong>How we compare</strong> — the rules that let those numbers answer a question. Statistics and causality.</li></ol><p>Both of these related to having a deep understanding of the data generation process. Each from a different angle. A crack in either pillar and whatever sits on top crumbles. Plots, significance, AI predictions, mean nothing.</p><p><strong><strong>How we measure</strong></strong></p><p>A misaligned microscope is the digital equivalent of crooked lumber. No amount of massage can birth a photon that never hit the sensor. In fluorescence imaging, the <strong>point-spread function</strong> tells you how a pin-point of light smears across neighboring pixels;<strong> noise</strong> reminds you that light itself arrives from and is recorded by at least some randomness. Misjudge either and the cell you call “twice as bright” may be a mirage.</p><p>In this data generation process the instrument nuances control what you see. Understanding this enables us to make judgements about what kind of post processing is right and which one may destroy or invent data. For simpler analysis the post processing can stop at cleaner raw data. For developing AI models, this process extends to labeling and analyzing data distributions. Andrew Ng’s approach, in data-centric AI, insists that tightening labels, fixing sensor drift, and writing clear provenance notes often beat fancier models.</p><p><strong><strong>How we compare</strong></strong></p><p>Now suppose Clarkson were to test a new fertilizer, fresh goat pellets, only on sunny plots. Any bumper harvest that follows says more about sunshine than about the pellets. Sound comparisons begin long before data arrive. A deep understanding of the science behind the experiment is critical before conducting any statistics. The wrong randomization, controls, and lurking confounder eat away at the foundation of statistics.</p><p>This information is <em>not</em> in the data. Only understanding how the experiment was designed and which events preclude others enable us to build a model of the world of the experiment. Taking this lightly has large risks for startups with limited budgets and smaller experiments. A false positive result leads to wasted resources while a false negative presents opportunity costs.&nbsp; &nbsp;</p><p>The stakes climb quickly. Early in the COVID-19 pandemic, some regions bragged of lower death rates. Age, testing access, and hospital load varied wildly, yet headlines crowned local policies as miracle cures. When later studies re-leveled the footing, the miracles vanished.&nbsp;</p><p><strong><strong>Why the pillars get skipped</strong></strong></p><p>Speed, habit, and misplaced trust. Leo Breiman warned in 2001 that many analysts chase algorithmic accuracy and skip the question of how the data were generated. What he called the “two cultures.” Today’s tooling tempts us even more: auto-charts, one-click models, pretrained everything. They save time—until they cost us the answer.</p><p>The other issue is lack of a culture that communicates and shares a common language. Only in academic training is it possible to train a single person to understand the science, the instrumentation, and the statistics sufficiently that their research may be taken seriously. Even then we prefer peer review. There is no such scope in startups. Tasks and expertise must be split. It falls to the data scientist to ensure clarity and collecting information horizontally. It is the job of the leadership to enable this or accept dumb risks.</p><p><strong><strong>Opening day</strong></strong></p><p>Clarkson’s pub opening was a monumental task with a thousand details tracked and tackled by an army of experts. Follow the journey from phenomenon to file, guard the twin pillars of <em>measure</em> and <em>compare</em>, and reinforce them up with careful curation and open culture. Do that, and your analysis leaves room for the most important thing: inquiry.</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/ai/" target="_blank">#AI</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/causal-inference/" target="_blank">#causalInference</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/clean-data/" target="_blank">#cleanData</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/data-centric-ai/" target="_blank">#dataCentricAI</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/data-provenance/" target="_blank">#dataProvenance</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/data-quality/" target="_blank">#dataQuality</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/data-science/" target="_blank">#dataScience</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/evidence-based-decision-making/" target="_blank">#evidenceBasedDecisionMaking</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/experiment-design/" target="_blank">#experimentDesign</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/feature-extraction/" target="_blank">#featureExtraction</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/foundation-engineering/" target="_blank">#foundationEngineering</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/instrumentation/" target="_blank">#instrumentation</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/measurement-error/" target="_blank">#measurementError</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/startup-analytics/" target="_blank">#startupAnalytics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/statistical-analysis/" target="_blank">#statisticalAnalysis</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://aneeshsathe.com/tag/statistics/" target="_blank">#statistics</a></p>
Carl Gold, PhD<p>My PR to the <a href="https://sigmoid.social/tags/EconML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EconML</span></a> <a href="https://sigmoid.social/tags/PyWhy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PyWhy</span></a> <a href="https://sigmoid.social/tags/opensource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opensource</span></a> <a href="https://sigmoid.social/tags/causalai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>causalai</span></a> project was merged! 🎉 I made a small contribution by allowing a flexible choice of evaluation metric for scoring both the first stage and final stage models in Double Machine Learning (<a href="https://sigmoid.social/tags/DML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DML</span></a>). Before, only the mean square error (MSE) was implemented. But as an ML practitioner "in the trenches" I have found that MSE is hard to interpret and compare across models. My new functions allow that 🙂 <a href="https://sigmoid.social/tags/CausalInference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CausalInference</span></a> <a href="https://sigmoid.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> <a href="https://sigmoid.social/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #383 Berkson's paradox</p><p>Thoughts: aka Berkson's bias, collider bias, or Berkson's fallacy. Important for interpreting conditional probabilities. Can produce counterintuitive patterns.</p><p><a href="https://mastodon.social/tags/paradox" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>paradox</span></a> <a href="https://mastodon.social/tags/collider" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>collider</span></a> <a href="https://mastodon.social/tags/bias" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bias</span></a> <a href="https://mastodon.social/tags/inference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>inference</span></a> <a href="https://mastodon.social/tags/causalinference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>causalinference</span></a></p><p><a href="https://en.m.wikipedia.org/wiki/Berkson's_paradox" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.m.wikipedia.org/wiki/Berkso</span><span class="invisible">n's_paradox</span></a></p>
Tom Stafford<p>So far at this conference I have seen reports of true experiments, natural experiments, difference in difference analysis and regression discontinuity design - but no instrumental variable analysis </p><p>I wonder why?</p><p>I was hoping for the full set of causal inference methods</p><p><a href="https://mastodon.online/tags/ICSSI2025" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ICSSI2025</span></a> <a href="https://mastodon.online/tags/CausalInference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CausalInference</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #367 Matching in R: Propensity Scores, Weighting (IPTW) and the Double Robust Estimator</p><p>Thoughts: A guide on common adjustments for observational studies.</p><p><a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>r</span></a> <a href="https://mastodon.social/tags/observational" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>observational</span></a> <a href="https://mastodon.social/tags/iptw" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>iptw</span></a> <a href="https://mastodon.social/tags/matching" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>matching</span></a> <a href="https://mastodon.social/tags/weights" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>weights</span></a> <a href="https://mastodon.social/tags/doublerobust" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>doublerobust</span></a> <a href="https://mastodon.social/tags/guide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>guide</span></a> <a href="https://mastodon.social/tags/causalinference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>causalinference</span></a></p><p><a href="https://www.franciscoyira.com/post/matching-in-r-3-propensity-score-iptw/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">franciscoyira.com/post/matchin</span><span class="invisible">g-in-r-3-propensity-score-iptw/</span></a></p>
MinmiTheDino<p>What are people’s fave methods for this situation:</p><p>At t0, all units are untreated. </p><p>As time goes on, individual units are one by one selected for treatment, on an expert’s assessment of their potential improvement under treatment. </p><p>How to measure the treatment effect, either over all units or ideally the treatment effect on each unit?</p><p>Oh, for extra fun, they’re probably not independent</p><p><a href="https://sfba.social/tags/Statistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Statistics</span></a> <a href="https://sfba.social/tags/CausalInference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CausalInference</span></a> <a href="https://sfba.social/tags/Econometrics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Econometrics</span></a></p>
Christian Röver<p>Registration is open for the GMDS ACADEMY 2025 (Hannover, October 20-23).<br>There will be three parallel workshops on meta analysis, causal inference and time-to-event analysis involving Wolfgang Viechtbauer (<span class="h-card" translate="no"><a href="https://scholar.social/@wviechtb" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>wviechtb</span></a></span>), Christian Röver, Sebastian Weber, Vanessa Didelez, Arthur Allignol, Oliver Kuß, Alexandra Strobel, Hannes Buchner, Xiaofei Liu and Ann-Kathrin Ozga.<br>See here for more details:<br>👉 <a href="https://www.gmds.de/fileadmin/user_upload/GMDS-Academy-2025.pdf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">gmds.de/fileadmin/user_upload/</span><span class="invisible">GMDS-Academy-2025.pdf</span></a></p><p><a href="https://mastodon.social/tags/MetaAnalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MetaAnalysis</span></a> <a href="https://mastodon.social/tags/CausalInference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CausalInference</span></a> <a href="https://mastodon.social/tags/SurvivalAnalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SurvivalAnalysis</span></a> <a href="https://mastodon.social/tags/GMDS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GMDS</span></a></p>
LLMsUnlocking Generative AI: A Deep Dive into Causal Language Models The landscape of artificial inte...<br><br><br><a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/llm" target="_blank">#llm</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/ai" target="_blank">#ai</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/causal-inference" target="_blank">#causal-inference</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/machine-learning" target="_blank">#machine-learning</a> <a rel="nofollow noopener" class="mention hashtag" href="https://mastodon.social/tags/nlp" target="_blank">#nlp</a><br><a href="https://medium.com/@danaasa/unlocking-generative-ai-a-deep-dive-into-causal-language-models-1c96fe1e6b6d?source=rss------machine_learning-5" rel="nofollow noopener" target="_blank">Origin</a> | <a href="https://awakari.com/sub-details.html?id=LLMs" rel="nofollow noopener" target="_blank">Interest</a> | <a href="https://awakari.com/pub-msg.html?id=94k53rOrgVZYnp9TPuG16UIpnQe&amp;interestId=LLMs" rel="nofollow noopener" target="_blank">Match</a>
मेंथी<p>Causal inference feels like pretty much the most important topic one can think of in statistics or even for humanity in general. So why is the entire field dominated by just one or two people (obviously I'm referring to Judea Pearl and/or Donald Rubin)? It feels rather... cultish. </p><p>Can any folks in the field opine why it is so dominated by one or two individuals, compared to any other important area of research today?</p><p><a href="https://social.seattle.wa.us/tags/CausalInference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CausalInference</span></a> <a href="https://social.seattle.wa.us/tags/Statistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Statistics</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #348 The Effect {book} - Causal Diagrams</p><p>Thoughts: At some point you'll need to learn about DAGs. Maybe this is the chapter you need.</p><p><a href="https://mastodon.social/tags/DAGs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DAGs</span></a> <a href="https://mastodon.social/tags/causalinference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>causalinference</span></a> <a href="https://mastodon.social/tags/guide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>guide</span></a> <a href="https://mastodon.social/tags/book" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>book</span></a> <a href="https://mastodon.social/tags/education" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>education</span></a> <a href="https://mastodon.social/tags/ebook" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ebook</span></a></p><p><a href="https://theeffectbook.net/ch-CausalDiagrams.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">theeffectbook.net/ch-CausalDia</span><span class="invisible">grams.html</span></a></p>
jobRxiv<p>Postdoc in Single-Cell Multi-Omic Gene Regulatory Networks </p><p>University of Massachusetts Chan Medical School</p><p>Join us to decode <a href="https://mas.to/tags/GeneRegulatoryNetwork" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GeneRegulatoryNetwork</span></a> from <a href="https://mas.to/tags/SingleCell" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SingleCell</span></a> multiomics with <a href="https://mas.to/tags/CausalInference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CausalInference</span></a> as a <a href="https://mas.to/tags/postdoc" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>postdoc</span></a>! Quantitative bg needed.</p><p>See the full job description on jobRxiv: <a href="https://jobrxiv.org/job/university-of-massachusetts-chan-medica" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">jobrxiv.org/job/university-of-</span><span class="invisible">massachusetts-chan-medica</span></a>...<br><a href="https://jobrxiv.org/job/university-of-massachusetts-chan-medical-school-27778-postdoc-in-single-cell-multi-omic-gene-regulatory-networks/?feed_id=94702" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">jobrxiv.org/job/university-of-</span><span class="invisible">massachusetts-chan-medical-school-27778-postdoc-in-single-cell-multi-omic-gene-regulatory-networks/?feed_id=94702</span></a></p>
MinmiTheDino<p>Hello SFBA! I’ve been wistfully thinking of switching over here for a while and recent fosstodon choices gave me the push I needed. So <a href="https://sfba.social/tags/introduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>introduction</span></a> time!</p><p>I’m from <a href="https://sfba.social/tags/SanFrancisco" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SanFrancisco</span></a> and moved back here after some wandering. Raising two kids and a dog. Working in tech (sigh) but on <a href="https://sfba.social/tags/sustainability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sustainability</span></a> at least. </p><p>Interested in and post about <a href="https://sfba.social/tags/CausalInference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CausalInference</span></a>, <a href="https://sfba.social/tags/Statistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Statistics</span></a>, <a href="https://sfba.social/tags/Politics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Politics</span></a>, <a href="https://sfba.social/tags/Policy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Policy</span></a>, <a href="https://sfba.social/tags/Climate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Climate</span></a>, <a href="https://sfba.social/tags/Energy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Energy</span></a>, <a href="https://sfba.social/tags/Dogs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Dogs</span></a>, <a href="https://sfba.social/tags/Crafting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Crafting</span></a> and <a href="https://sfba.social/tags/Parenting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Parenting</span></a></p>