mastodon.world is one of the many independent Mastodon servers you can use to participate in the fediverse.
Generic Mastodon server for anyone to use.

Server stats:

8.3K
active users

#datascientists

0 posts0 participants0 posts today
☮ ♥ ♬ 🧑‍💻<p>“Students are introduced to advanced AI techniques such as <a href="https://ioc.exchange/tags/ChainOfThought" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ChainOfThought</span></a> and <a href="https://ioc.exchange/tags/SelfConsistencyPrompting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SelfConsistencyPrompting</span></a>, which simulate humanlike reasoning. <a href="https://ioc.exchange/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenerativeAI</span></a> is presented not just as a tool for queries but as a partner in reasoning. </p><p>“We teach reinforcement learning from human feedback, where every correction becomes training data,” Madmoun adds. </p><p>Students are encouraged to view AI not as a static engine, but as a responsive tool for making critical decisions in high-stakes financial environments.</p><p>Recognising that students enter with varying levels of technical knowledge, the Master in International Finance (MiF) at HEC Paris provides asynchronous <a href="https://ioc.exchange/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://ioc.exchange/tags/programming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>programming</span></a> courses, optional <a href="https://ioc.exchange/tags/BootCamps" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BootCamps</span></a>, and tailored elective tracks. “We’ve integrated workshops taught by Hi! PARIS into the curriculum,” says academic director Evren Örs, referring to the <a href="https://ioc.exchange/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> and <a href="https://ioc.exchange/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> centre co-founded by HEC Paris and Institut Polytechnique de Paris. </p><p>Students from both institutions collaborate on real-data projects, strengthening both technical and teamwork skills.</p><p>A tiered elective system requires all MiF students to complete at least one course focused on <a href="https://ioc.exchange/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a> and <a href="https://ioc.exchange/tags/finance" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>finance</span></a>. The most advanced track is the <a href="https://ioc.exchange/tags/DoubleDegree" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DoubleDegree</span></a> in data and finance, where students dive deep into <a href="https://ioc.exchange/tags/MachineLlearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLlearning</span></a> applications. Graduates, Örs says, are frequently hired as <a href="https://ioc.exchange/tags/QuantitativeAnalysts" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantitativeAnalysts</span></a>, <a href="https://ioc.exchange/tags/DataScientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScientists</span></a>, and private equity analysts in London and Paris.”</p><p><a href="https://ioc.exchange/tags/BusinessSchools" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BusinessSchools</span></a> / <a href="https://ioc.exchange/tags/education" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>education</span></a> &lt;<a href="https://archive.md/xysyM" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">archive.md/xysyM</span><span class="invisible"></span></a>&gt; / &lt;<a href="https://ft.com/content/071dc338-b267-466c-836a-f559609fffd5" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">ft.com/content/071dc338-b267-4</span><span class="invisible">66c-836a-f559609fffd5</span></a>&gt; (paywall)</p>
Marcel-Jan Krijgsman<p>How well do you think you know your data, <a href="https://mastodon.nl/tags/dataengineers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataengineers</span></a> and <a href="https://mastodon.nl/tags/datascientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascientists</span></a> ? You might want to profile your data more.<br>I've worked with the <a href="https://mastodon.nl/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> package <a href="https://mastodon.nl/tags/ydata" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ydata</span></a>-profiling . It has some issues. But when I got it working, I found some surprising details about a dataset that I thought I already knew quite well. <a href="https://mastodon.nl/tags/pyspark" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pyspark</span></a><br><a href="https://marcel-jan.eu/datablog/2025/04/24/profiling-data-with-ydata-in-pyspark/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">marcel-jan.eu/datablog/2025/04</span><span class="invisible">/24/profiling-data-with-ydata-in-pyspark/</span></a></p>
3xfactorial<p>Today at <a href="https://mastodon.social/tags/WorkshopsForUkraine" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WorkshopsForUkraine</span></a>: <a href="https://mastodon.social/tags/Devops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Devops</span></a> for <a href="https://mastodon.social/tags/DataScientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScientists</span></a> (<a href="https://mastodon.social/tags/R" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>R</span></a> <a href="https://mastodon.social/tags/Rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Rstats</span></a> &amp; <a href="https://mastodon.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a>), by Rika Gorn (Posit), Thursday April 3rd, 6 pm CET. Register or sponsor a place for a student by donating to support <a href="https://mastodon.social/tags/Ukraine" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Ukraine</span></a>. Details: <a href="https://sites.google.com/view/dariia-mykhailyshyna/main/r-workshops-for-ukraine#h.nk355htoamjv" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">sites.google.com/view/dariia-m</span><span class="invisible">ykhailyshyna/main/r-workshops-for-ukraine#h.nk355htoamjv</span></a></p>
Statistics Globe<p>Visualizing gene structures in R? gggenes, an extension of ggplot2, simplifies the process of creating clear and informative gene diagrams, making genomic data easier to interpret and share.</p><p>Visualization: <a href="https://cran.r-project.org/web/packages/gggenes/vignettes/introduction-to-gggenes.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">cran.r-project.org/web/package</span><span class="invisible">s/gggenes/vignettes/introduction-to-gggenes.html</span></a></p><p>Click this link for detailed information: <a href="https://statisticsglobe.com/online-course-data-visualization-ggplot2-r" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-data-visualization-ggplot2-r</span></a></p><p><a href="https://mastodon.social/tags/datastructure" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datastructure</span></a> <a href="https://mastodon.social/tags/datavisualization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datavisualization</span></a> <a href="https://mastodon.social/tags/dataanalytics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataanalytics</span></a> <a href="https://mastodon.social/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a> <a href="https://mastodon.social/tags/tidyverse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tidyverse</span></a> <a href="https://mastodon.social/tags/datascientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascientists</span></a> <a href="https://mastodon.social/tags/ggplot2" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ggplot2</span></a></p>
Statistics Globe<p>Evaluating the normality of your data is crucial in statistical analysis, as many techniques assume that the data and/or residuals follow a normal distribution.</p><p>The visualization in the post contrasts two QQ plots: the left plot shows a data set following a normal distribution, where the points align closely with the reference line.</p><p>Check out this tutorial: <a href="https://statisticsglobe.com/r-qqplot-qqnorm-qqline-function" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/r-qqplot-q</span><span class="invisible">qnorm-qqline-function</span></a></p><p>Click this link for detailed information: <a href="https://statisticsglobe.com/online-course-statistical-methods-r" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-statistical-methods-r</span></a></p><p><a href="https://mastodon.social/tags/datascientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascientists</span></a> <a href="https://mastodon.social/tags/datavisualization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datavisualization</span></a> <a href="https://mastodon.social/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a></p>
Nonilex<p>The employees also warned that many of those enlisted by <a href="https://masto.ai/tags/ElonMusk" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ElonMusk</span></a> to help him slash the size of the federal government under <a href="https://masto.ai/tags/Trump" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Trump</span></a>’s admin were political ideologues who did not have the necessary skills or experience for the task ahead of them.</p><p>The mass <a href="https://masto.ai/tags/resignation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>resignation</span></a> of <a href="https://masto.ai/tags/engineers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>engineers</span></a>, <a href="https://masto.ai/tags/DataScientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScientists</span></a> &amp; <a href="https://masto.ai/tags/ProductManagers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ProductManagers</span></a> is a temporary setback for <a href="https://masto.ai/tags/Musk" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Musk</span></a> &amp; the Republican president’s tech-driven <a href="https://masto.ai/tags/purge" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>purge</span></a> of the federal workforce.</p><p><a href="https://masto.ai/tags/law" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>law</span></a> <a href="https://masto.ai/tags/USpol" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>USpol</span></a> <a href="https://masto.ai/tags/FederalAgencies" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FederalAgencies</span></a></p>
IB Teguh TM<p>Discover how to implement hierarchical clustering in Python with our detailed tutorial. Perfect for <a href="https://mastodon.social/tags/DataScientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScientists</span></a> and <a href="https://mastodon.social/tags/ML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ML</span></a> engineers looking to master clustering algorithms. Includes code examples, visualizations, and practical applications. <a href="https://mastodon.social/tags/Programming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Programming</span></a></p><p><a href="https://teguhteja.id/hierarchical-clustering-python-step-by-step-implementation-guide/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">teguhteja.id/hierarchical-clus</span><span class="invisible">tering-python-step-by-step-implementation-guide/</span></a></p>
Statistics Globe<p>Principal Component Analysis (PCA) before Linear Regression can greatly enhance your data analysis process.</p><p>By incorporating PCA before performing linear regression, you can streamline your analysis pipeline and build more robust models that capture the essential relationships within your data.</p><p>I've developed an in-depth course on PCA theory and its application in R programming. </p><p>Further details: <a href="https://statisticsglobe.com/online-course-pca-theory-application-r" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-pca-theory-application-r</span></a></p><p><a href="https://mastodon.social/tags/pythontraining" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pythontraining</span></a> <a href="https://mastodon.social/tags/datascientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascientists</span></a> <a href="https://mastodon.social/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a> <a href="https://mastodon.social/tags/bigdata" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bigdata</span></a> <a href="https://mastodon.social/tags/advancedanalytics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>advancedanalytics</span></a></p>
Helen Scott<p>The latest blog post in my productive data series for <a href="https://mastodon.social/tags/DataScientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScientists</span></a> has landed, cleaning your data: <a href="https://jb.gg/legjhx" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">jb.gg/legjhx</span><span class="invisible"></span></a></p><p>If you’re late to the party, we started with where to get data from: <a href="https://jb.gg/omw1ki" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">jb.gg/omw1ki</span><span class="invisible"></span></a></p><p>Then we explored that data: <a href="https://jb.gg/0i6mdr" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">jb.gg/0i6mdr</span><span class="invisible"></span></a></p><p>And if you want to get stuck in straight away, check out 7 ways to use Jupyter Notebooks inside <a href="https://mastodon.social/tags/Pycharm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pycharm</span></a>: <a href="https://jb.gg/9a1kui" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">jb.gg/9a1kui</span><span class="invisible"></span></a></p>
Statistics Globe<p>Both R and Python are powerful tools widely used for data analysis and research, making them worth a detailed comparison.</p><p>Data credit: <a href="https://www.kaggle.com/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">kaggle.com/</span><span class="invisible"></span></a></p><p>Learn more: <a href="https://statisticsglobe.com/online-course-r-introduction" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-r-introduction</span></a></p><p><a href="https://mastodon.social/tags/bigdata" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bigdata</span></a> <a href="https://mastodon.social/tags/rstudio" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstudio</span></a> <a href="https://mastodon.social/tags/datascientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascientists</span></a> <a href="https://mastodon.social/tags/datasciencecourse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datasciencecourse</span></a> <a href="https://mastodon.social/tags/package" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>package</span></a></p>
Luis<p>I met the founder of the company and thought it was interesting to publish something about it.<br>A New Approach To Training With Perforated Ai <a href="https://medium.com/@luismarcelobp/a-new-approach-to-training-with-perforated-ai-339e29cabd54" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">medium.com/@luismarcelobp/a-ne</span><span class="invisible">w-approach-to-training-with-perforated-ai-339e29cabd54</span></a> <a href="https://fosstodon.org/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a> <a href="https://fosstodon.org/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://fosstodon.org/tags/datascientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascientists</span></a> <a href="https://fosstodon.org/tags/learning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>learning</span></a></p>
reinoud kaasschieter<p>«If we asked you to imagine a decillion dollars, can you actually picture it in your head? The odds are, you can't. A study in 2013 showed that people find it more difficult to comprehend larger numbers. But why?»</p><p>People are also bad in assessing very small and very last probabilities. <a href="https://mastodon.nl/tags/DataScientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScientists</span></a> should take this psychological <a href="https://mastodon.nl/tags/Biases" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Biases</span></a> into account when presenting results to human audiences.</p><p><a href="https://www.bbc.com/reel/video/p0k962x2/why-our-brains-are-bad-at-understanding-big-numbers" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">bbc.com/reel/video/p0k962x2/wh</span><span class="invisible">y-our-brains-are-bad-at-understanding-big-numbers</span></a> via <a href="https://mastodon.nl/tags/BBC" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BBC</span></a> </p><p><a href="https://mastodon.nl/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mastodon.nl/tags/Statistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Statistics</span></a> <a href="https://mastodon.nl/tags/DataEngineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataEngineering</span></a> <a href="https://mastodon.nl/tags/Bias" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Bias</span></a> <a href="https://mastodon.nl/tags/Psychology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Psychology</span></a></p>
Rohit Farmer, Ph.D.<p>I invite <a href="https://fosstodon.org/tags/dataScientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataScientists</span></a> and <a href="https://fosstodon.org/tags/computationalBiologists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalBiologists</span></a> to contribute to Data All The Way! (<a href="https://dataalltheway.com" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">dataalltheway.com</span><span class="invisible"></span></a>). Share <a href="https://fosstodon.org/tags/tutorials" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tutorials</span></a>, concepts, or projects (with code/Kaggle notebooks) under your name. I’ll help with editing and formatting. Contact me here or via the website to get started!</p><p><a href="https://fosstodon.org/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://fosstodon.org/tags/Bioinformatics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Bioinformatics</span></a> <a href="https://fosstodon.org/tags/computationalbiology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalbiology</span></a> <a href="https://fosstodon.org/tags/blog" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>blog</span></a> <a href="https://fosstodon.org/tags/blogpost" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>blogpost</span></a></p>
Crossref<p>Get ready for our first Metadata Sprint! On 8-9 April 2025 in Madrid, we're bringing together <a href="https://mastodon.online/tags/librarians" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>librarians</span></a>, <a href="https://mastodon.online/tags/developers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>developers</span></a>, <a href="https://mastodon.online/tags/datascientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascientists</span></a>, and open infrastructure enthusiasts to co-create and innovate with Crossref <a href="https://mastodon.online/tags/metadata" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>metadata</span></a> and APIs. Whether you're pitching a project or joining a team, this is your chance to connect, collaborate, and create something impactful. Limited spaces—submit your abstract today. <a href="https://www.crossref.org/events/api-sprint/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">crossref.org/events/api-sprint</span><span class="invisible">/</span></a></p>
Federica Gazzelloni<p>Final Remainder it's happening Today: <br>September 30, 2024 at 7:00PM CEST <br>Data Wrangling Practice with R </p><p>RSVP: <a href="https://www.meetup.com/rladies-rome/events/303481357" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">meetup.com/rladies-rome/events</span><span class="invisible">/303481357</span></a></p><p>@silacos @Rafagrlucas <span class="h-card" translate="no"><a href="https://fosstodon.org/@fgazzelloni" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>fgazzelloni</span></a></span> @RLadiesGlobal</p><p><a href="https://fosstodon.org/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> <a href="https://fosstodon.org/tags/DataScientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScientists</span></a></p>
R-Ladies Rome<p>Happening Today:</p><p>September 30, 2024 at 7:00PM CEST</p><p>Data Wrangling Practice with R</p><p>RSVP: <a href="https://meetup.com/rladies-rome/events/303481357" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">meetup.com/rladies-rome/events</span><span class="invisible">/303481357</span></a></p><p>@silacos @Rafagrlucas <span class="h-card" translate="no"><a href="https://fosstodon.org/@fgazzelloni" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>fgazzelloni</span></a></span> @RLadiesGlobal</p><p><a href="https://fosstodon.org/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> <a href="https://fosstodon.org/tags/DataScientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScientists</span></a></p>
R-Ladies Rome<p>There is still time to register for an hands-on session on: <br>Data Wrangling Practice with R</p><p>When: Tomorrow, Monday September 30, 2024 at 7:00PM CEST</p><p>RSVP: <a href="https://www.meetup.com/rladies-rome/events/303481357" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">meetup.com/rladies-rome/events</span><span class="invisible">/303481357</span></a></p><p>@silacos @Rafagrlucas <span class="h-card" translate="no"><a href="https://fosstodon.org/@fgazzelloni" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>fgazzelloni</span></a></span> <span class="h-card" translate="no"><a href="https://hachyderm.io/@RLadiesGlobal" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>RLadiesGlobal</span></a></span> <a href="https://fosstodon.org/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> <a href="https://fosstodon.org/tags/DataScientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScientists</span></a></p>
Statistics Globe<p>Diving into Principal Component Analysis (PCA) unveils two heroes of data simplification: Eigenvalues and Eigenvectors. These mathematical concepts might sound intimidating, but they're crucial for understanding how PCA transforms complex data into something much more manageable. Let's demystify them:</p><p>Looking to get hands-on with eigenvalues, eigenvectors, and PCA using the R programming language? Unlock the power of your data: <a href="https://statisticsglobe.com/online-course-pca-theory-application-r" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticsglobe.com/online-cou</span><span class="invisible">rse-pca-theory-application-r</span></a></p><p><a href="https://mastodon.social/tags/DataScientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScientists</span></a> <a href="https://mastodon.social/tags/rprogramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rprogramming</span></a></p>
Benjamin Carr, Ph.D. 👨🏻‍💻🧬<p><a href="https://hachyderm.io/tags/Anaconda" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Anaconda</span></a> puts squeeze on <a href="https://hachyderm.io/tags/datascientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascientists</span></a> deemed to be <a href="https://hachyderm.io/tags/ToS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ToS</span></a> violators<br>Academic, non-profit organizations now being told to pay up – or else<br>"Research and non-profits are also the entities providing a lot of the repositories in the anacondaecosystem. I believe Anaconda are currently testing to see what happens if they play hardball with them."<br>Source said interaction with company echoed Oracle’s tactics – it became clear licensing fees dating back years could be sought. <br><a href="https://www.theregister.com/2024/08/08/anaconda_puts_the_squeeze_on/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">theregister.com/2024/08/08/ana</span><span class="invisible">conda_puts_the_squeeze_on/</span></a></p>
czbr<p>Such things could not be shared enough!<br>- - -<br>Dive into Deep Learning (free 1151-page PDF download provided by the author @smolix): alex.smola.org/projects.html<br>- - -<br><a href="https://hachyderm.io/tags/BigData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BigData</span></a> <a href="https://hachyderm.io/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://hachyderm.io/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://hachyderm.io/tags/ML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ML</span></a> <a href="https://hachyderm.io/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://hachyderm.io/tags/DeepLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DeepLearning</span></a> <a href="https://hachyderm.io/tags/Algorithms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Algorithms</span></a> <a href="https://hachyderm.io/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a> <a href="https://hachyderm.io/tags/Calculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Calculus</span></a> <a href="https://hachyderm.io/tags/NeuralNetworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuralNetworks</span></a> <a href="https://hachyderm.io/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://hachyderm.io/tags/Jupyter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Jupyter</span></a> <a href="https://hachyderm.io/tags/DataScientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScientists</span></a><br>- - -<br>via <a href="https://x.com/kirkdborne/status/1806423683935748495" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">x.com/kirkdborne/status/180642</span><span class="invisible">3683935748495</span></a></p>