mastodon.world is one of the many independent Mastodon servers you can use to participate in the fediverse.
Generic Mastodon server for anyone to use.

Server stats:

8.9K
active users

#QuantumOptics

2 posts1 participant0 posts today
UK<p><a href="https://www.europesays.com/uk/129080/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/uk/129080/</span><span class="invisible"></span></a> Long optical coherence times in a rare-earth-doped antiferromagnet <a href="https://pubeurope.com/tags/Atomic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Atomic</span></a> <a href="https://pubeurope.com/tags/ClassicalAndContinuumPhysics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ClassicalAndContinuumPhysics</span></a> <a href="https://pubeurope.com/tags/ComplexSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ComplexSystems</span></a> <a href="https://pubeurope.com/tags/CondensedMatterPhysics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CondensedMatterPhysics</span></a> <a href="https://pubeurope.com/tags/Ferromagnetism" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Ferromagnetism</span></a> <a href="https://pubeurope.com/tags/general" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>general</span></a> <a href="https://pubeurope.com/tags/MathematicalAndComputationalPhysics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathematicalAndComputationalPhysics</span></a> <a href="https://pubeurope.com/tags/Molecular" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Molecular</span></a> <a href="https://pubeurope.com/tags/OpticalAndPlasmaPhysics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpticalAndPlasmaPhysics</span></a> <a href="https://pubeurope.com/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://pubeurope.com/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://pubeurope.com/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumPhysics</span></a> <a href="https://pubeurope.com/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a> <a href="https://pubeurope.com/tags/Theoretical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Theoretical</span></a> <a href="https://pubeurope.com/tags/UK" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UK</span></a> <a href="https://pubeurope.com/tags/UnitedKingdom" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UnitedKingdom</span></a></p>
UK<p><a href="https://www.europesays.com/uk/126686/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/uk/126686/</span><span class="invisible"></span></a> Chirality-induced quantum non-reciprocity | Nature Photonics <a href="https://pubeurope.com/tags/AppliedAndTechnicalPhysics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AppliedAndTechnicalPhysics</span></a> <a href="https://pubeurope.com/tags/AtomOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AtomOptics</span></a> <a href="https://pubeurope.com/tags/general" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>general</span></a> <a href="https://pubeurope.com/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://pubeurope.com/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://pubeurope.com/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumPhysics</span></a> <a href="https://pubeurope.com/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a> <a href="https://pubeurope.com/tags/UK" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UK</span></a> <a href="https://pubeurope.com/tags/UnitedKingdom" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UnitedKingdom</span></a></p>
UK<p><a href="https://www.europesays.com/uk/105349/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/uk/105349/</span><span class="invisible"></span></a> Quantum Computing Inc. Reports First Quarter 2025 Financial Results <a href="https://pubeurope.com/tags/Computing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Computing</span></a> <a href="https://pubeurope.com/tags/FirstQuarter" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FirstQuarter</span></a> <a href="https://pubeurope.com/tags/OperatingExpenses" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OperatingExpenses</span></a> <a href="https://pubeurope.com/tags/QCi" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QCi</span></a> <a href="https://pubeurope.com/tags/QuantumComputing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumComputing</span></a> <a href="https://pubeurope.com/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://pubeurope.com/tags/Technology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Technology</span></a> <a href="https://pubeurope.com/tags/TheCompany" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TheCompany</span></a> <a href="https://pubeurope.com/tags/UK" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UK</span></a> <a href="https://pubeurope.com/tags/UnitedKingdom" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UnitedKingdom</span></a></p>
UK<p><a href="https://www.europesays.com/uk/103098/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/uk/103098/</span><span class="invisible"></span></a> Tunable vacuum-field control of fractional and integer quantum Hall phases <a href="https://pubeurope.com/tags/HumanitiesAndSocialSciences" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HumanitiesAndSocialSciences</span></a> <a href="https://pubeurope.com/tags/multidisciplinary" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>multidisciplinary</span></a> <a href="https://pubeurope.com/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://pubeurope.com/tags/QuantumHall" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumHall</span></a> <a href="https://pubeurope.com/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://pubeurope.com/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a> <a href="https://pubeurope.com/tags/UK" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UK</span></a> <a href="https://pubeurope.com/tags/UnitedKingdom" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UnitedKingdom</span></a></p>
UK<p><a href="https://www.europesays.com/uk/100163/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/uk/100163/</span><span class="invisible"></span></a> Photon bunching in high-harmonic emission controlled by quantum light <a href="https://pubeurope.com/tags/AppliedAndTechnicalPhysics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AppliedAndTechnicalPhysics</span></a> <a href="https://pubeurope.com/tags/general" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>general</span></a> <a href="https://pubeurope.com/tags/HighHarmonicGeneration" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HighHarmonicGeneration</span></a> <a href="https://pubeurope.com/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://pubeurope.com/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://pubeurope.com/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumPhysics</span></a> <a href="https://pubeurope.com/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a> <a href="https://pubeurope.com/tags/UK" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UK</span></a> <a href="https://pubeurope.com/tags/UltrafastPhotonics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UltrafastPhotonics</span></a> <a href="https://pubeurope.com/tags/UnitedKingdom" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UnitedKingdom</span></a></p>
QUINTO project<p>We just submitted the first QUINTO draft of paper to a journal. Let's see what the editors and reviewers think.</p><p>The paper is about fractional quantum Hall states in atomic arrays. Here is the popular summary we submitted alongside:</p><p>"When atoms are arranged in a regular, dense array, their response to light can change drastically. The photons can bounce between the atoms, getting absorbed and re-emitted again and interfering with themselves. This field of quantum optics with atomic arrays is of active interest. Due to interactions, the limit of many absorbed photons generally remains hard to model, but at the same time may result in new, counterintuitive physical phenomena. In the search for ways to understand such systems, we can look for analogies in condensed matter physics, where the behavior of many interacting particles (electrons in this case) has been studied for decades. Here, we report on finding such an analogy between the behavior of few photons absorbed by an array and peculiar many-electron quantum states known as fractional quantum Hall (FQH) states. FQH states display many counterintuitive properties -- for example the electrons behave like they decomposed into pieces (e.g. "one third of an electron"), even though we know that in reality they are indivisible. Now we know that photons in arrays can behave similarly."</p><p>[1/2]</p><p><a href="https://fediscience.org/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a> <a href="https://fediscience.org/tags/science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>science</span></a> <a href="https://fediscience.org/tags/CondensedMatterPhysics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CondensedMatterPhysics</span></a> <a href="https://fediscience.org/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CondensedMatter</span></a> <a href="https://fediscience.org/tags/condMat" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>condMat</span></a> <a href="https://fediscience.org/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://fediscience.org/tags/Quantum" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Quantum</span></a> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/physics" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>physics</span></a></span></p>
QUINTO project<p>We just came back from the "Light-Matter Interactions and Collective Effects" workshop in Paris. We heard some interesting talks on how quantum emitters (not only atoms, but also e.g. molecules and quantum dots) interact with each other and how people try to arrange them into arrays (like, putting chains of molecules inside a carbon nanotube). Darrick (my boss and supervisor of the project) gave a talk on spin liquids, while I presented a poster on fractional quantum Hall states in atom arrays. </p><p><a href="https://fediscience.org/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a> <a href="https://fediscience.org/tags/quantum" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>quantum</span></a> <a href="https://fediscience.org/tags/science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>science</span></a> <a href="https://fediscience.org/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://fediscience.org/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CondensedMatter</span></a> <a href="https://fediscience.org/tags/CondMat" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CondMat</span></a></p>
UK<p><a href="https://www.europesays.com/uk/63554/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/uk/63554/</span><span class="invisible"></span></a> Near-ultrastrong nonlinear light-matter coupling in superconducting circuits <a href="https://pubeurope.com/tags/AtomicAndMolecularInteractionsWithPhotons" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AtomicAndMolecularInteractionsWithPhotons</span></a> <a href="https://pubeurope.com/tags/HumanitiesAndSocialSciences" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HumanitiesAndSocialSciences</span></a> <a href="https://pubeurope.com/tags/multidisciplinary" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>multidisciplinary</span></a> <a href="https://pubeurope.com/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://pubeurope.com/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://pubeurope.com/tags/Qubits" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Qubits</span></a> <a href="https://pubeurope.com/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a> <a href="https://pubeurope.com/tags/SinglePhotonsAndQuantumEffects" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SinglePhotonsAndQuantumEffects</span></a> <a href="https://pubeurope.com/tags/UK" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UK</span></a> <a href="https://pubeurope.com/tags/UnitedKingdom" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UnitedKingdom</span></a></p>
UK<p><a href="https://www.europesays.com/uk/51109/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/uk/51109/</span><span class="invisible"></span></a> Integrated electro-optics on thin-film lithium niobate <a href="https://pubeurope.com/tags/general" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>general</span></a> <a href="https://pubeurope.com/tags/IntegratedOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>IntegratedOptics</span></a> <a href="https://pubeurope.com/tags/Microresonators" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Microresonators</span></a> <a href="https://pubeurope.com/tags/MicrowavePhotonics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MicrowavePhotonics</span></a> <a href="https://pubeurope.com/tags/NonlinearOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NonlinearOptics</span></a> <a href="https://pubeurope.com/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://pubeurope.com/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://pubeurope.com/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a> <a href="https://pubeurope.com/tags/UK" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UK</span></a> <a href="https://pubeurope.com/tags/UnitedKingdom" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UnitedKingdom</span></a></p>
MCQST<p>🎉 Congratulations to Immanuel Bloch, MCQST co-Spokesperson, for receiving the first <a href="https://wisskomm.social/tags/HightechPreise2025" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HightechPreise2025</span></a> of the Bavarian Prime Minister recognizing his pioneering work in experimental quantum sciences.</p><p>➡️ Read more: <a href="https://www.mcqst.de/news-and-events/news/immanuel-bloch-receives-the-hightech-award.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">mcqst.de/news-and-events/news/</span><span class="invisible">immanuel-bloch-receives-the-hightech-award.html</span></a><br>📸 StMWK / A. Gebert</p><p><a href="https://wisskomm.social/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://wisskomm.social/tags/QuantumSciece" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumSciece</span></a> <br><a href="https://wisskomm.social/tags/HightechBayern" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HightechBayern</span></a></p>
QUINTO project<p>Fractional quantum Hall states in atom arrays</p><p>Our second approach to create a topological order in atom arrays is to focus on a different kind of topological order: fractional quantum Hall (FQH) states. These were first discovered in condensed matter. It is possible to confine electrons to move in two-dimensions only (such as in the 2D material graphene or in so-called metal-oxide-semiconductor transistors) and then put them in a strong perpendicular magnetic fields. The electrons then move in circles (so-called “cyclotron motion”), but since they are quantum objects, only some values of radius are allowed. Thus, the energy can only take certain fixed values (we call them “Landau levels”). There are however different possibilities of an electron having the same energy, because the center of the orbit can be located in different places – we say that Landau levels are “degenerate”. And when there is degeneracy, the interaction between electrons becomes very important. Without interactions, there are many possible ways of arranging electrons within a Landau level, all with the same energy. In the presence of interactions, some arrangements become preferred – and it turns out those correspond to topological orders known as the FQH states. Such systems host anyons which look like fractions of an electron – like somehow the electron split into several parts. </p><p>[1/2]</p><p><a href="https://fediscience.org/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://fediscience.org/tags/science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>science</span></a> <a href="https://fediscience.org/tags/TopologicalOrder" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TopologicalOrder</span></a> <a href="https://fediscience.org/tags/Quantum" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Quantum</span></a> <a href="https://fediscience.org/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://fediscience.org/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CondensedMatter</span></a> <a href="https://fediscience.org/tags/CondMat" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CondMat</span></a> <a href="https://fediscience.org/tags/cond_mat" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cond_mat</span></a> <a href="https://fediscience.org/tags/QuantumHall" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumHall</span></a></p>
QUINTO project<p>Spin liquids in Rydberg atom arrays in cavities</p><p>What is our proposal for the realization of spin liquid?</p><p>We consider an atom array held by optical tweezers and placed in an optical cavity. The cavity consists of two mirrors placed on the opposite sides of the system. The photons which normally would escape the system (at least some of them) will bounce back and forth between the mirrors. In such a configuration, the distance between atoms becomes irrelevant and the probability of an excitation hopping between any two atoms becomes the same.</p><p>The second ingredient is that the excited state of the atoms would be a Rydberg state – a very high-energy state where the electron is far away from the nucleus. The atoms in Rydberg states interact strongly by van der Waals forces. In our case it would mean that two excitations will have much higher energy when they are at nearest-neighboring atoms than if they are far away.</p><p>This setting seems much different from usual crystals. In the typical material, the electrons are much more likely to hop between nearest-neighboring atoms than far-away ones, while in our case they would be able hop arbitrarily far with the same probability. But it turns out that there is in equivalence between such “infinite-range hopping + Rydberg” model and the Heisenberg model, commonly used to describe magnets, including the frustrated ones.<br>[1/2]<br><a href="https://fediscience.org/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://fediscience.org/tags/Quantum" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Quantum</span></a> <a href="https://fediscience.org/tags/TopologicalOrder" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TopologicalOrder</span></a> <a href="https://fediscience.org/tags/CondMat" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CondMat</span></a> <a href="https://fediscience.org/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CondensedMatter</span></a> <a href="https://fediscience.org/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://fediscience.org/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a></p>
MPI for Gravitational Physics<p>Juliane von Wrangel is a PhD student in the “10 m Prototype” group</p><p>Together with her colleagues she is building a 10-metre interferometer to overcome the fundamental limits of measurement accuracy imposed by quantum mechanics.</p><p>ℹ️ <a href="https://www.aei.mpg.de/305613/juliane-von-wrangel" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">aei.mpg.de/305613/juliane-von-</span><span class="invisible">wrangel</span></a></p><p><a href="https://astrodon.social/tags/IDWGS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>IDWGS</span></a> <a href="https://astrodon.social/tags/WomenInSTEM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WomenInSTEM</span></a> <a href="https://astrodon.social/tags/WomenInScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WomenInScience</span></a> <a href="https://astrodon.social/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://astrodon.social/tags/PhD" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PhD</span></a> <a href="https://astrodon.social/tags/QuantumMechanics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumMechanics</span></a> <a href="https://astrodon.social/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://astrodon.social/tags/Research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Research</span></a> <a href="https://astrodon.social/tags/Hannover" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hannover</span></a></p>
QUINTO project<p>Atom arrays</p><p>Scientists have developed ways of trapping atoms and arranging them in space using laser beams (such as “optical tweezers” and “optical lattices”). What can one do using these tools? One possibility is arranging the atoms in a regular array. </p><p>Why people find it interesting? It was found that such systems have properties much different than clouds of atoms randomly flying around. The lattice structure changes how the atoms emit and absorb light. This is because light emitted from different atoms can interfere, and a regular structure of array works like a diffraction grating. This happens especially if the distance between atoms is smaller than one wavelength.</p><p>For example, a 1D chain of atoms in a certain state emits light only on its ends. And a 2D array can act as a perfect mirror (for certain wavelength), even though it is only one atom thin.</p><p>It was theoretically shown that these effects can be used to boost the efficiency of optical quantum devices such as memories and gates, which may be used in the future for a “quantum internet” and quantum computers. </p><p><a href="https://fediscience.org/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://fediscience.org/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a> <a href="https://fediscience.org/tags/Quantum" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Quantum</span></a> <a href="https://fediscience.org/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://fediscience.org/tags/atoms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>atoms</span></a> <a href="https://fediscience.org/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CondensedMatter</span></a> <a href="https://fediscience.org/tags/CondMat" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CondMat</span></a> </p><p>[1/2]</p>
MPI for Gravitational Physics<p>Frauke Modugno is a PhD student in the “Quantum Control” group, who works for <span class="h-card" translate="no"><a href="https://helmholtz.social/@DESY" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>DESY</span></a></span> as part of her work for the German Centre for Astrophysics (DZA).</p><p>Her area of research are surfaces and materials for specialized optics to improve detection sensitivity for applications in quantum metrology and gravitational-wave detection.</p><p>ℹ️ <a href="https://www.aei.mpg.de/1214294/frauke-modugno" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">aei.mpg.de/1214294/frauke-modu</span><span class="invisible">gno</span></a></p><p><a href="https://astrodon.social/tags/IDWGS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>IDWGS</span></a> <a href="https://astrodon.social/tags/WomenInSTEM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WomenInSTEM</span></a> <a href="https://astrodon.social/tags/WomenInScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WomenInScience</span></a> <a href="https://astrodon.social/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://astrodon.social/tags/PhD" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PhD</span></a> <a href="https://astrodon.social/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://astrodon.social/tags/GravitationalWaves" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GravitationalWaves</span></a> <a href="https://astrodon.social/tags/Research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Research</span></a> <a href="https://astrodon.social/tags/Hannover" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hannover</span></a></p>
MPI for Gravitational Physics<p>Dr. Mariia Matiushechkina is a postdoctoral researcher in the “Quantum Control” group.</p><p>Her research runs at the border of the classical and quantum worlds. She investigates micro-mechanical systems that are able to detect very small light pressure and to reveal quantum-mechanical uncertainties. After investigating plenty micro- and nano-structures I had a chance to improve my knowledge of metamaterials. She has designed a highly reflective metastructure that exhibits low mechanical noise for the future implementation in gravitational-wave detectors.</p><p>ℹ️ <a href="https://www.aei.mpg.de/884924/mariia-matiushechkina" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">aei.mpg.de/884924/mariia-matiu</span><span class="invisible">shechkina</span></a></p><p><a href="https://astrodon.social/tags/IDWGS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>IDWGS</span></a> <a href="https://astrodon.social/tags/WomenInSTEM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WomenInSTEM</span></a> <a href="https://astrodon.social/tags/WomenInScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WomenInScience</span></a> <a href="https://astrodon.social/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://astrodon.social/tags/PhD" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PhD</span></a> <a href="https://astrodon.social/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://astrodon.social/tags/GravitationalWaves" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GravitationalWaves</span></a> <a href="https://astrodon.social/tags/Research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Research</span></a> <a href="https://astrodon.social/tags/Hannover" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hannover</span></a></p>
MPI for Gravitational Physics<p>Lea Richtmann, a PhD student in the “Quantum Control” group works on a quantum optical testbed for quantum machine learning</p><p>ℹ️ <a href="https://www.aei.mpg.de/883820/lea-richtmann" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">aei.mpg.de/883820/lea-richtman</span><span class="invisible">n</span></a></p><p>Edit: Fixed broken link</p><p><a href="https://astrodon.social/tags/IDWGS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>IDWGS</span></a> <a href="https://astrodon.social/tags/WomenInSTEM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WomenInSTEM</span></a> <a href="https://astrodon.social/tags/WomenInScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WomenInScience</span></a> <a href="https://astrodon.social/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://astrodon.social/tags/PhD" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PhD</span></a> <a href="https://astrodon.social/tags/QuantumMachineLearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumMachineLearning</span></a> <a href="https://astrodon.social/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://astrodon.social/tags/Research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Research</span></a> <a href="https://astrodon.social/tags/Hannover" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hannover</span></a></p>
MPI for Gravitational Physics<p>Prof. Dr. Michèle Heurs is a professor of experimental physics at <span class="h-card" translate="no"><a href="https://wisskomm.social/@unihannover" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>unihannover</span></a></span> and leads the “Quantum Control” group.</p><p>She works in the field of quantum optics, in particular in non-classical laser interferometry, quantum metrology, and quantum opto-mechanics. Her group works on making (laser) light that is better than nature would like you to be able to have. It’s called „squeezed light“, and the group uses it for precision measurements. They exploit the Heisenberg uncertainty principle to reduce the noise in the measurement quantity they’re interested in, at the cost of increasing the noise in another (uninteresting one). This allows them to increase the precision of measurements to below the quantum level.</p><p>Examples of such sensitive measurements are gravitational-wave detection, where quantum noise already limits the measurement sensitivity over much of the detection band, but also applications in ultra-high precision spectroscopy, and quantum information, amongst others.</p><p>ℹ️ <a href="https://www.aei.mpg.de/305873/michele-heurs" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">aei.mpg.de/305873/michele-heur</span><span class="invisible">s</span></a></p><p><a href="https://astrodon.social/tags/IDWGS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>IDWGS</span></a> <a href="https://astrodon.social/tags/WomenInSTEM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WomenInSTEM</span></a> <a href="https://astrodon.social/tags/WomenInScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>WomenInScience</span></a> <a href="https://astrodon.social/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://astrodon.social/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a> <a href="https://astrodon.social/tags/SqueezedLight" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SqueezedLight</span></a> <a href="https://astrodon.social/tags/Laser" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Laser</span></a> <a href="https://astrodon.social/tags/Professor" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Professor</span></a> <a href="https://astrodon.social/tags/Research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Research</span></a> <a href="https://astrodon.social/tags/Hannover" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Hannover</span></a></p>
Antonio Ganfornina Andrades<p>Más vale tarde que nunca. Fijo mi <a href="https://mastodon.social/tags/presentacion" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>presentacion</span></a> </p><p>Soy Antonio, y el <a href="https://mastodon.social/tags/perro" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>perro</span></a> tan adorable de mi foto de perfil se llama Zizek.</p><p>Soy investigador en Óptica Cuántica 🔬💻. <a href="https://mastodon.social/tags/quantumoptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>quantumoptics</span></a> </p><p><a href="https://arxiv.org/search/physics?searchtype=author&amp;query=Ganfornina-Andrades,+A" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">arxiv.org/search/physics?searc</span><span class="invisible">htype=author&amp;query=Ganfornina-Andrades,+A</span></a></p><p>En mi tiempo libre leo ensayos académicos sobre juegos y diseño los míos aquí 📝 🕹️ <a href="https://mastodon.social/tags/gamedev" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>gamedev</span></a> </p><p><a href="https://antonio-california-games.itch.io/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">antonio-california-games.itch.</span><span class="invisible">io/</span></a></p><p>Me gusta la <a href="https://mastodon.social/tags/poesia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>poesia</span></a> 🎭 📖 (en especial las obras de Sylvia Plath, Rainer Maria Rilke, y William Blake), los <a href="https://mastodon.social/tags/v%C3%ADdeojuegos" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>vídeojuegos</span></a>, y <a href="https://mastodon.social/tags/cocinar" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cocinar</span></a> (me da mucha paz mental).</p>
QUINTO project<p>Quantum simulation of topological orders</p><p>In the previous posts, I was talking a lot about complex quantum states that we aim to study in the QUINTO project: topological orders, in particular spin liquids. Now, let us see how quantum optics can help us in this endeavour. </p><p>Topological orders can be hard to find. Not all of them – one particular class, “fractional quantum Hall states”, can be created in the lab by applying very strong magnetic field to electrons confined in two dimensions. But others, such as spin liquids, remain elusive, even though scientists proposed some materials in which spin liquids might occur. </p><p>Moreover, with solid-state materials, we don’t usually have enough control to manipulate individual anyons as precisely as we would want (even though impressive experiments were performed with tiny anyon colliders and anyon interferometers in the quantum Hall systems). </p><p>An alternative is to assemble a quantum system – a “quantum simulator” from scratch, piece by piece, precisely controlling its parameters. For example, it is possible to “catch” a single atom with a laser beam – a so-called “optical tweezer”. The radiation pressure of the beam “traps” the atom in the point where the light is strongest, i.e. where the beam is focused. Such atoms can then be arranged in arrays resembling crystals.</p><p>[1/2]<br><a href="https://fediscience.org/tags/TopologicalOrder" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TopologicalOrder</span></a> <a href="https://fediscience.org/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://fediscience.org/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a> <a href="https://fediscience.org/tags/Quantum" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Quantum</span></a> <a href="https://fediscience.org/tags/QuantumSimulation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumSimulation</span></a> <a href="https://fediscience.org/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumPhysics</span></a> <a href="https://fediscience.org/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>QuantumOptics</span></a></p>