foldworks<p>A different approach yields XYZ Diamonds. This unit differs from the two models by late Francis Ow (one has instructions at <a href="https://owrigami.com/show_diagram.php?diagram=xyz_diamonds" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">owrigami.com/show_diagram.php?</span><span class="invisible">diagram=xyz_diamonds</span></a>, check out the site for other great origami)</p><p>The model uses the inherent geometry of 1:√3 rectangles (but could be folded from other rectangles). Much easier to fold and assemble than the other models 😄 </p><p><a href="https://mathstodon.xyz/tags/star" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>star</span></a> <a href="https://mathstodon.xyz/tags/origami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>origami</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/octahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>octahedron</span></a> <a href="https://mathstodon.xyz/tags/ModularOrigami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ModularOrigami</span></a> <a href="https://mathstodon.xyz/tags/craft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>craft</span></a> <a href="https://mathstodon.xyz/tags/design" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>design</span></a> <a href="https://mathstodon.xyz/tags/PaperCraft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PaperCraft</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a> <a href="https://mathstodon.xyz/tags/ArtistOnMastodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtistOnMastodon</span></a> <a href="https://mathstodon.xyz/tags/ArtistsOnMastodon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtistsOnMastodon</span></a> <a href="https://mathstodon.xyz/tags/artwork" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>artwork</span></a> <a href="https://mathstodon.xyz/tags/3D" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3D</span></a> <a href="https://mathstodon.xyz/tags/art" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>art</span></a> <a href="https://mathstodon.xyz/tags/artist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>artist</span></a> <a href="https://mathstodon.xyz/tags/arts" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arts</span></a> <a href="https://mathstodon.xyz/tags/arte" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arte</span></a> <a href="https://mathstodon.xyz/tags/designer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>designer</span></a> <a href="https://mathstodon.xyz/tags/MastoArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MastoArt</span></a> <a href="https://mathstodon.xyz/tags/FediArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FediArt</span></a> <a href="https://mathstodon.xyz/tags/CreativeToots" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeToots</span></a></p>