mastodon.world is one of the many independent Mastodon servers you can use to participate in the fediverse.
Generic Mastodon server for anyone to use.

Server stats:

9.1K
active users

#csAI

127 posts24 participants23 posts today
arXiv logo
arXiv.orgComparing Exploration-Exploitation Strategies of LLMs and Humans: Insights from Standard Multi-armed Bandit TasksLarge language models (LLMs) are increasingly used to simulate or automate human behavior in complex sequential decision-making tasks. A natural question is then whether LLMs exhibit similar decision-making behavior to humans, and can achieve comparable (or superior) performance. In this work, we focus on the exploration-exploitation (E&E) tradeoff, a fundamental aspect of dynamic decision-making under uncertainty. We employ canonical multi-armed bandit (MAB) tasks introduced in the cognitive science and psychiatry literature to conduct a comparative study of the E&E strategies of LLMs, humans, and MAB algorithms. We use interpretable choice models to capture the E&E strategies of the agents and investigate how explicit reasoning, through both prompting strategies and reasoning-enhanced models, shapes LLM decision-making. We find that reasoning shifts LLMs toward more human-like behavior, characterized by a mix of random and directed exploration. In simple stationary tasks, reasoning-enabled LLMs exhibit similar levels of random and directed exploration compared to humans. However, in more complex, non-stationary environments, LLMs struggle to match human adaptability, particularly in effective directed exploration, despite achieving similar regret in certain scenarios. Our findings highlight both the promise and limits of LLMs as simulators of human behavior and tools for automated decision-making and point to potential areas of improvements.
#cslg#csai#cscl
arXiv logo
arXiv.orgAutomated Detection of Clinical Entities in Lung and Breast Cancer Reports Using NLP TechniquesResearch projects, including those focused on cancer, rely on the manual extraction of information from clinical reports. This process is time-consuming and prone to errors, limiting the efficiency of data-driven approaches in healthcare. To address these challenges, Natural Language Processing (NLP) offers an alternative for automating the extraction of relevant data from electronic health records (EHRs). In this study, we focus on lung and breast cancer due to their high incidence and the significant impact they have on public health. Early detection and effective data management in both types of cancer are crucial for improving patient outcomes. To enhance the accuracy and efficiency of data extraction, we utilized GMV's NLP tool uQuery, which excels at identifying relevant entities in clinical texts and converting them into standardized formats such as SNOMED and OMOP. uQuery not only detects and classifies entities but also associates them with contextual information, including negated entities, temporal aspects, and patient-related details. In this work, we explore the use of NLP techniques, specifically Named Entity Recognition (NER), to automatically identify and extract key clinical information from EHRs related to these two cancers. A dataset from Health Research Institute Hospital La Fe (IIS La Fe), comprising 200 annotated breast cancer and 400 lung cancer reports, was used, with eight clinical entities manually labeled using the Doccano platform. To perform NER, we fine-tuned the bsc-bio-ehr-en3 model, a RoBERTa-based biomedical linguistic model pre-trained in Spanish. Fine-tuning was performed using the Transformers architecture, enabling accurate recognition of clinical entities in these cancer types. Our results demonstrate strong overall performance, particularly in identifying entities like MET and PAT, although challenges remain with less frequent entities like EVOL.
arXiv logo
arXiv.orgSystem Prompt Optimization with Meta-LearningLarge Language Models (LLMs) have shown remarkable capabilities, with optimizing their input prompts playing a pivotal role in maximizing their performance. However, while LLM prompts consist of both the task-agnostic system prompts and task-specific user prompts, existing work on prompt optimization has focused on user prompts specific to individual queries or tasks, and largely overlooked the system prompt that is, once optimized, applicable across different tasks and domains. Motivated by this, we introduce the novel problem of bilevel system prompt optimization, whose objective is to design system prompts that are robust to diverse user prompts and transferable to unseen tasks. To tackle this problem, we then propose a meta-learning framework, which meta-learns the system prompt by optimizing it over various user prompts across multiple datasets, while simultaneously updating the user prompts in an iterative manner to ensure synergy between them. We conduct experiments on 14 unseen datasets spanning 5 different domains, on which we show that our approach produces system prompts that generalize effectively to diverse user prompts. Also, our findings reveal that the optimized system prompt enables rapid adaptation even to unseen tasks, requiring fewer optimization steps for test-time user prompts while achieving improved performance.
arXiv logo
arXiv.orgUnlocking Location Intelligence: A Survey from Deep Learning to The LLM EraLocation Intelligence (LI), the science of transforming location-centric geospatial data into actionable knowledge, has become a cornerstone of modern spatial decision-making. The rapid evolution of Geospatial Representation Learning is fundamentally reshaping LI development through two successive technological revolutions: the deep learning breakthrough and the emerging large language model (LLM) paradigm. While deep neural networks (DNNs) have demonstrated remarkable success in automated feature extraction from structured geospatial data (e.g., satellite imagery, GPS trajectories), the recent integration of LLMs introduces transformative capabilities for cross-modal geospatial reasoning and unstructured geo-textual data processing. This survey presents a comprehensive review of geospatial representation learning across both technological eras, organizing them into a structured taxonomy based on the complete pipeline comprising: (1) data perspective, (2) methodological perspective and (3) application perspective. We also highlight current advancements, discuss existing limitations, and propose potential future research directions in the LLM era. This work offers a thorough exploration of the field and providing a roadmap for further innovation in LI. The summary of the up-to-date paper list can be found in https://github.com/CityMind-Lab/Awesome-Location-Intelligence and will undergo continuous updates.
arXiv logo
arXiv.orgDark LLMs: The Growing Threat of Unaligned AI ModelsLarge Language Models (LLMs) rapidly reshape modern life, advancing fields from healthcare to education and beyond. However, alongside their remarkable capabilities lies a significant threat: the susceptibility of these models to jailbreaking. The fundamental vulnerability of LLMs to jailbreak attacks stems from the very data they learn from. As long as this training data includes unfiltered, problematic, or 'dark' content, the models can inherently learn undesirable patterns or weaknesses that allow users to circumvent their intended safety controls. Our research identifies the growing threat posed by dark LLMs models deliberately designed without ethical guardrails or modified through jailbreak techniques. In our research, we uncovered a universal jailbreak attack that effectively compromises multiple state-of-the-art models, enabling them to answer almost any question and produce harmful outputs upon request. The main idea of our attack was published online over seven months ago. However, many of the tested LLMs were still vulnerable to this attack. Despite our responsible disclosure efforts, responses from major LLM providers were often inadequate, highlighting a concerning gap in industry practices regarding AI safety. As model training becomes more accessible and cheaper, and as open-source LLMs proliferate, the risk of widespread misuse escalates. Without decisive intervention, LLMs may continue democratizing access to dangerous knowledge, posing greater risks than anticipated.
#cscl#csai#cscr
arXiv logo
arXiv.orgPsOCR: Benchmarking Large Multimodal Models for Optical Character Recognition in Low-resource Pashto LanguageThis paper evaluates the performance of Large Multimodal Models (LMMs) on Optical Character Recognition (OCR) in the low-resource Pashto language. Natural Language Processing (NLP) in Pashto faces several challenges due to the cursive nature of its script and a scarcity of structured datasets. To address this, we developed a synthetic Pashto OCR dataset, PsOCR, consisting of one million images annotated with bounding boxes at word, line, and document levels, suitable for training and evaluating models based on different architectures, including Convolutional Neural Networks (CNNs) and Transformers. PsOCR covers variations across 1,000 unique font families, colors, image sizes, and layouts. A benchmark subset of 10K images was selected to evaluate the performance of several LMMs, including seven open-source models: DeepSeek's Janus, InternVL, MiniCPM, Florence, and Qwen (3B and 7B), and four closed-source models: GPT-4o, Gemini, Claude, and Grok. Experimental results demonstrate that Gemini achieves the best performance among all models, whereas among open-source models, Qwen-7B stands out. This work provides an insightful assessment of the capabilities and limitations of current LMMs for OCR tasks in Pashto and establishes a foundation for further research not only in Pashto OCR but also for other similar scripts such as Arabic, Persian, and Urdu. PsOCR is available at https://github.com/zirak-ai/PashtoOCR.
arXiv logo
arXiv.orgBoosting Text-to-Chart Retrieval through Training with Synthesized Semantic InsightsCharts are crucial for data analysis and decision-making.Text-to-chart retrieval systems have become increasingly important for Business Intelligence (BI), where users need to find relevant charts that match their analytical needs. These needs can be categorized into precise queries that are well-specified and fuzzy queries that are more exploratory -- both require understanding the semantics and context of the charts. However, existing text-to-chart retrieval solutions often fail to capture the semantic content and contextual information of charts, primarily due to the lack of comprehensive metadata (or semantic insights). To address this limitation, we propose a training data development pipeline that automatically synthesizes hierarchical semantic insights for charts, covering visual patterns (visual-oriented), statistical properties (statistics-oriented), and practical applications (task-oriented), which produces 207,498 semantic insights for 69,166 charts. Based on these, we train a CLIP-based model named ChartFinder to learn better representations of charts for text-to-chart retrieval. Our method leverages rich semantic insights during the training phase to develop a model that understands both visual and semantic aspects of charts.To evaluate text-to-chart retrieval performance, we curate the first benchmark, CRBench, for this task with 21,862 charts and 326 text queries from real-world BI applications, with ground-truth labels verified by the crowd workers.Experiments show that ChartFinder significantly outperforms existing methods in text-to-chart retrieval tasks across various settings. For precise queries, ChartFinder achieves up to 66.9% NDCG@10, which is 11.58% higher than state-of-the-art models. In fuzzy query tasks, our method also demonstrates consistent improvements, with an average increase of 5% across nearly all metrics.
arXiv logo
arXiv.orgAnalysing Safety Risks in LLMs Fine-Tuned with Pseudo-Malicious Cyber Security DataThe integration of large language models (LLMs) into cyber security applications presents significant opportunities, such as enhancing threat analysis and malware detection, but can also introduce critical risks and safety concerns, including personal data leakage and automated generation of new malware. We present a systematic evaluation of safety risks in fine-tuned LLMs for cyber security applications. Using the OWASP Top 10 for LLM Applications framework, we assessed seven open-source LLMs: Phi 3 Mini 3.8B, Mistral 7B, Qwen 2.5 7B, Llama 3 8B, Llama 3.1 8B, Gemma 2 9B, and Llama 2 70B. Our evaluation shows that fine-tuning reduces safety resilience across all tested LLMs (e.g., the safety score of Llama 3.1 8B against prompt injection drops from 0.95 to 0.15). We propose and evaluate a safety alignment approach that carefully rewords instruction-response pairs to include explicit safety precautions and ethical considerations. This approach demonstrates that it is possible to maintain or even improve model safety while preserving technical utility, offering a practical path forward for developing safer fine-tuning methodologies. This work offers a systematic evaluation for safety risks in LLMs, enabling safer adoption of generative AI in sensitive domains, and contributing towards the development of secure, trustworthy, and ethically aligned LLMs.
arXiv logo
arXiv.orgPre-Act: Multi-Step Planning and Reasoning Improves Acting in LLM AgentsThe ReAct (Reasoning + Action) capability in large language models (LLMs) has become the foundation of modern agentic systems. Recent LLMs, such as DeepSeek-R1 and OpenAI o1/o3, exemplify this by emphasizing reasoning through the generation of ample intermediate tokens, which help build a strong premise before producing the final output tokens. In this paper, we introduce Pre-Act, a novel approach that enhances the agent's performance by creating a multi-step execution plan along with the detailed reasoning for the given user input. This plan incrementally incorporates previous steps and tool outputs, refining itself after each step execution until the final response is obtained. Our approach is applicable to both conversational and non-conversational agents. To measure the performance of task-oriented agents comprehensively, we propose a two-level evaluation framework: (1) turn level and (2) end-to-end. Our turn-level evaluation, averaged across five models, shows that our approach, Pre-Act, outperforms ReAct by 70% in Action Recall on the Almita dataset. While this approach is effective for larger models, smaller models crucial for practical applications, where latency and cost are key constraints, often struggle with complex reasoning tasks required for agentic systems. To address this limitation, we fine-tune relatively small models such as Llama 3.1 (8B & 70B) using the proposed Pre-Act approach. Our experiments show that the fine-tuned 70B model outperforms GPT-4, achieving a 69.5% improvement in action accuracy (turn-level) and a 28% improvement in goal completion rate (end-to-end) on the Almita (out-of-domain) dataset.
arXiv logo
arXiv.orgAI-Driven Scholarly Peer Review via Persistent Workflow Prompting, Meta-Prompting, and Meta-ReasoningCritical peer review of scientific manuscripts presents a significant challenge for Large Language Models (LLMs), partly due to data limitations and the complexity of expert reasoning. This report introduces Persistent Workflow Prompting (PWP), a potentially broadly applicable prompt engineering methodology designed to bridge this gap using standard LLM chat interfaces (zero-code, no APIs). We present a proof-of-concept PWP prompt for the critical analysis of experimental chemistry manuscripts, featuring a hierarchical, modular architecture (structured via Markdown) that defines detailed analysis workflows. We develop this PWP prompt through iterative application of meta-prompting techniques and meta-reasoning aimed at systematically codifying expert review workflows, including tacit knowledge. Submitted once at the start of a session, this PWP prompt equips the LLM with persistent workflows triggered by subsequent queries, guiding modern reasoning LLMs through systematic, multimodal evaluations. Demonstrations show the PWP-guided LLM identifying major methodological flaws in a test case while mitigating LLM input bias and performing complex tasks, including distinguishing claims from evidence, integrating text/photo/figure analysis to infer parameters, executing quantitative feasibility checks, comparing estimates against claims, and assessing a priori plausibility. To ensure transparency and facilitate replication, we provide full prompts, detailed demonstration analyses, and logs of interactive chats as supplementary resources. Beyond the specific application, this work offers insights into the meta-development process itself, highlighting the potential of PWP, informed by detailed workflow formalization, to enable sophisticated analysis using readily available LLMs for complex scientific tasks.
arXiv logo
arXiv.orgContextual Phenotyping of Pediatric Sepsis Cohort Using Large Language ModelsClustering patient subgroups is essential for personalized care and efficient resource use. Traditional clustering methods struggle with high-dimensional, heterogeneous healthcare data and lack contextual understanding. This study evaluates Large Language Model (LLM) based clustering against classical methods using a pediatric sepsis dataset from a low-income country (LIC), containing 2,686 records with 28 numerical and 119 categorical variables. Patient records were serialized into text with and without a clustering objective. Embeddings were generated using quantized LLAMA 3.1 8B, DeepSeek-R1-Distill-Llama-8B with low-rank adaptation(LoRA), and Stella-En-400M-V5 models. K-means clustering was applied to these embeddings. Classical comparisons included K-Medoids clustering on UMAP and FAMD-reduced mixed data. Silhouette scores and statistical tests evaluated cluster quality and distinctiveness. Stella-En-400M-V5 achieved the highest Silhouette Score (0.86). LLAMA 3.1 8B with the clustering objective performed better with higher number of clusters, identifying subgroups with distinct nutritional, clinical, and socioeconomic profiles. LLM-based methods outperformed classical techniques by capturing richer context and prioritizing key features. These results highlight potential of LLMs for contextual phenotyping and informed decision-making in resource-limited settings.
#qbioqm#csai#cslg
arXiv logo
arXiv.orgContextual Phenotyping of Pediatric Sepsis Cohort Using Large Language ModelsClustering patient subgroups is essential for personalized care and efficient resource use. Traditional clustering methods struggle with high-dimensional, heterogeneous healthcare data and lack contextual understanding. This study evaluates Large Language Model (LLM) based clustering against classical methods using a pediatric sepsis dataset from a low-income country (LIC), containing 2,686 records with 28 numerical and 119 categorical variables. Patient records were serialized into text with and without a clustering objective. Embeddings were generated using quantized LLAMA 3.1 8B, DeepSeek-R1-Distill-Llama-8B with low-rank adaptation(LoRA), and Stella-En-400M-V5 models. K-means clustering was applied to these embeddings. Classical comparisons included K-Medoids clustering on UMAP and FAMD-reduced mixed data. Silhouette scores and statistical tests evaluated cluster quality and distinctiveness. Stella-En-400M-V5 achieved the highest Silhouette Score (0.86). LLAMA 3.1 8B with the clustering objective performed better with higher number of clusters, identifying subgroups with distinct nutritional, clinical, and socioeconomic profiles. LLM-based methods outperformed classical techniques by capturing richer context and prioritizing key features. These results highlight potential of LLMs for contextual phenotyping and informed decision-making in resource-limited settings.
#qbioqm#csai#cslg
arXiv logo
arXiv.orgCXMArena: Unified Dataset to benchmark performance in realistic CXM ScenariosLarge Language Models (LLMs) hold immense potential for revolutionizing Customer Experience Management (CXM), particularly in contact center operations. However, evaluating their practical utility in complex operational environments is hindered by data scarcity (due to privacy concerns) and the limitations of current benchmarks. Existing benchmarks often lack realism, failing to incorporate deep knowledge base (KB) integration, real-world noise, or critical operational tasks beyond conversational fluency. To bridge this gap, we introduce CXMArena, a novel, large-scale synthetic benchmark dataset specifically designed for evaluating AI in operational CXM contexts. Given the diversity in possible contact center features, we have developed a scalable LLM-powered pipeline that simulates the brand's CXM entities that form the foundation of our datasets-such as knowledge articles including product specifications, issue taxonomies, and contact center conversations. The entities closely represent real-world distribution because of controlled noise injection (informed by domain experts) and rigorous automated validation. Building on this, we release CXMArena, which provides dedicated benchmarks targeting five important operational tasks: Knowledge Base Refinement, Intent Prediction, Agent Quality Adherence, Article Search, and Multi-turn RAG with Integrated Tools. Our baseline experiments underscore the benchmark's difficulty: even state of the art embedding and generation models achieve only 68% accuracy on article search, while standard embedding methods yield a low F1 score of 0.3 for knowledge base refinement, highlighting significant challenges for current models necessitating complex pipelines and solutions over conventional techniques.
#cslg#csai#cscl